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SOFTWARE DEPENDABILITY IN THE OPERATIONAL PHASE

Inhwan Lee, Ph.D.
Department of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign, 1994
Ravishankar K. Iyer, Advisor

Software quality should be built-in and maintained throughout the software life

cycle, which requires understanding of software dependability in actual environments.

This thesis discusses how to develop analysis techniques for evaluating the dependability

of operational software using real measurements while taking design issues into account.

The issues addressed include fault categorization and characterization of error propaga-

tion, symptom-based diagnosis of recurrent software failures, identification of software

fault tolerance, evaluation of the impact of software faults on the overall system, and the

development of techniques for analyzing multiway failure dependencies among software

and hardware modules. The process is illustrated using a case study of the Tandem

GUARDIAN operating system.

Using process pairs in Tandem systems, which was originally intended for tolerat-

ing hardware faults, allows the system to tolerate about 70% of reported faults in the

system software that cause processor failures. The loose coupling between processors,

which results in the backup execution (the processor state and the sequence of events)

being different from the original execution, is a major reason for the measured software

fault tolerance. About 72% of reported field software failures in Tandem systems are

recurrences of previously reported faults. In addition to the conventional approach of

reducing the number of faults in software, software dependability in Tandem systems

can be enhanced by reducing the recurrence rate and by improving the robustness of

process pairs and the system configuration. An approach for automatically diagnosing

recurrences based on their symptoms is developed. The results of evaluations of the

effectiveness of the approach show that between 75% and 95% of recurrences can be

successfully identified by matching failure symptoms, such as stack traces and problem

detection locations. Less than 10% of faults are misdiagnosed.
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Chapter 1

Introduction

While hardware reliability has improved significantly in recent decades, improvements

in software reliability have not been as pronounced. Hardware faults are generally well

understood, efficient hardware fault models exist, and hardware fault tolerance is rel-

atively inexpensive to implement. Unfortunately, the same is not true for software.

Software faults are logically complex, poorly understood, and hard to model. Software

fault tolerance is a moving target: software quality keeps changing with design updates,

and software varies significantly from system to system. To further complicate matters,

software interacts with hardware and the environment, blurring the boundaries between

them. It is generally believed that software is the major source of system outages in

fault-tolerant systems [1], [2]. Given the increasing size and complexity of software, this

trend is likely to continue.

Software quality should be built-in and maintained throughout the software life cycle.

This requires understanding software dependability in actual environments. There is no

better way to understand the dependability characteristics of a complex software system

than through direct measurement and analysis. This thesis discusses development of

analysis techniques for evaluating the dependability of operational software using real

measurements while taking design issues into account. In this thesis, measurements mean

the monitoring and recording of naturally occurring errors and failures in the running

system under user workloads.

Many studies have sought to improve the software development process by using

the failure data collected during the development phase. A typical assumption was that



I

the development process is the only important factor determining software dependability. i
However, dependability issues for operational software can be very different from those for

the software during its development, due to differences in the operational environment

and software maturity. During the operational phase, software is not an independent

entity but a part of the system. Thus, the dependability of operational software has to be

investigated in the context of the overall system. Although the dependability of software 3
is eventually judged by the software's behavior in the operational phase, dependability

evaluation of operational software has been a greatly neglected area. This research fills 3
the vacuum by bringing practical issues in designing and maintaining large software

systems together with theoretical issues, such as problem diagnosis, fault tolerance, and 3
modeling and analysis.

A study of the dependability of operational software based on real measurements is 3
not simply an analysis of data. It involves instrumentation and requires understanding

system architecture, hardware, and software as well as the development, service, and 3
operational environments. A major question is: what can we say about future systems I
based on measurements from current systems? Another major question is: what can we

say about general designs based on measurements of a specific design? A study based

on real measurements may not address all design areas. In some areas, however, it

can provide very important understanding of how well current techniques work and can 3
identify the critical dependability issues that must be addressed. This thesis identifies

and addresses these areas based on measurements taken from a fault-tolerant software 3
system: the Tandem GUARDIAN operating system.

This research consists of two major parts: analysis and design. The analysis covers 3
software fault categorization and characterization of software error propagation, identi-

fication of software fault tolerance, evaluation of the impact of software faults on the 3
overall system, and the development of techniques for analyzing multiway failure depen-

dencies among software and hardware modules. The results of the analysis are used for 3
design. Based on the analysis results, this thesis develops a system-independent approach

for automatically diagnosing recurrences based on symptoms.

23
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I 1.1 Related Research

i Software errors in the development phase have been studied by researchers in the

software engineering field. Software error data collected from the DOS/VS operating

system during the testing phase was analyzed in [3]. A wide-ranging analysis of software

i error data collected during the development phase was reported in [4]. An error analysis

technique was used to evaluate software development methodologies in [5]. Relationships

3 between the frequency and distribution of errors during software development, mainte-

nance of the developed software, and a variety of environmental factors were analyzed in

3 [6]. The orthogonal defect classification, an approach to use observed software defects to

provide feedback on the development process, was proposed in [7). These studies mainly

* attempt to fine-tune the software development process based on error analysis.

Software reliability modeling has been studied extensively, and many models have

I been proposed [81, [9]. For the most part, these models attempt to estimate the reliability

of software by analyzing the failure history of software during the development phase,

I verification efforts, and operational profile.

Measurement-based analysis of operational software dependability has evolved over

the past 15 years. An early study proposed a workload-dependent probabilistic model

for predicting software errors based on measurements from a DEC system [10]. A study

of failures and recovery of the MVS operating system running on an IBM 3081 machine

3 addressed the issue of hardware-related software errors [11]. The effect of workload on

operating system reliability has been analyzed using the'data collected from an IBM 3081

t running VM/SP [12]. A Markov model that describes the software error and recovery

process in a production environment using error logs from the MVS operating system

3 was discussed in [13]. A recent analysis of data from the IBM/MVS system investigated

software defects and their impact on system availability [2]. A census of Tandem system

3 availability has shown that, as the reliability of hardware and maintenance improves,

software becomes the major source (62%) of outages in the Tandem system [1].

I3U
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Symptoms of faults in computer systems have been studied using error logs. An I
information organization and data reduction concept for fault prediction, tuple, was de-

veloped in [14]. Separation of an error log into transient and intermittent events, and

failure prediction based on the shape of the interarrival time function were discussed 3
in [15]. A probabilistic methodology for recognizing the symptoms of persistent prob-

lems was proposed and illustrated using error data collected from an IBM 3081 and two 3
CYBER systems [16].

Failure diagnosis has attempted to locate the underlying faults of failures. Symptom- 3
directed diagnosis of system faults was discussed in [17], [18]. An expert system to help

analyze crashes of the VMS operating system using the crash dump files and system event 3
logs as data was presented in [19]. Detection and discrimination of network faults based

on network traffic signatures were studied -An [20]. The recreate problem in identifying 3
and diagnosing software failures in the field was discussed in [21].

Software failures have also been studied from the software fault tolerance perspec- -
tive. Two major approaches for software fault tolerance-recovery blocks and N-version

programming-were proposed in [22], [23]. Dependability modeling and evaluation of

these two approaches were discussed in [24]. An approximate model to account for fail-

ures due to design faults was derived and used to evaluate a fault-tolerant software system

in [25]. The effectiveness of recovery routines in the MVS operating systems was eval-

uated using measurements from an IBM 3081 machine in [26]. Software fault tolerance

in the Tandem GUARDIAN operating system was discussed in [27], [28]. Architectural 3
issues for incorporating hardware and software fault tolerance were discussed in [29], [30],

[31]. 3

1.2 Contributions i
The contribution of this thesis is that it identifies and addresses critical dependability 3

issues for large, continually evolving, operational software. Using measurements collected

from the Tandem GUARDIAN operating system, this thesis demonstrates how to develop I

43
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analysis techniques for evaluating the dependability of operational software while taking

3 design issues into account. This research consists of two major parts: analysis and design.

The analysis covers software fault categorization and characterization of software error

3m propagation, identification of software fault tolerance of process pairs, evaluation of the

impact of software faults on the overall system, and the development of techniques for

3 analyzing multiway failure dependencies among software and hardware modules. Based

on the results of analysis, this thesis develops a system-independent approach for auto-

I matically diagnosing recurrences based on their symptoms. The numerical results are

specific to the measurements, but the methods and principles apply to other studies.

1.2.1 Analysis

This research found that about 72% of reported field software failures in Tandem

3 systems are recurrences of previously reported faults. This result shows that, in environ-

ments where many users run the same software, the number of faults in software is not

U the only important factor. Recurrences can seriously degrade software dependability in

the field. The investigation of failure symptoms showed that failures caused by the same

I software fault often have identical stack traces, which suggests that automatic diagnosis

of recurrences based on symptoms might be possible. Further analysis showed that error

propagation and modular program structure are major reasons that failures caused by

the same software fault have different stack traces. Consistency checks made by the op-

erating system help failures caused by the same software fault have identical stack traces

* by preventing error propagation.

The results showed that hardware fault tolerance buys software fault tolerance. Using

3 process pairs in Tandem systems, which was originally intended for tolerating hardware

faults, allows the system to tolerate about 70% of reported faults in the system software

3 that cause processor failures. The loose coupling between processors, which results in

the backup execution (the processor state and the sequence of events occurring) being

3 different from the original execution, is a major reason for the measured software fault

tolerance. The results indicated that the actual level of software fault tolerance achievedI
!5



I

by the use of process pairs depends on the degree of difference in the processing environ- I
ment between the original and backup executions and on the proportion of subtle faults I
in the software. While process pairs may not provide perfect software fault tolerance,

the implementation of process pairs is not as prohibitively expensive as is developing and 3
maintaining multiple versions of large software programs.

Missing operations and not providing routines to handle rare but legitimate opera- 3
tional scenarios are the most common types of software faults in Tandem systems. The

data showed that there is a 60% chance that a single program variable acquires an initial, 3
incorrect value when software faults are exercised. In about 20% of the cases, multiple

program variables are affected simultaneously. Once errors are generated, the three major 3
error propagation modes are: the first error is certain to be detected on the first access by

consistency checks (no propagation, 31%); the problem is detected shortly after the first 3
error is accessed and used (quick detection, 39%); and the first error causes more errors,

which are detected after a significant latency (further corruption, 18%). In about half of 3
the failures, problems are detected by consistency checks; in the other half, problems are

detected as a result of address violations.

This research developed a method for analyzing multiway failure dependencies among 3
software and hardware modules. The method is based on multivariate statistical tech-

niques, such as factor analysis and cluster analysis. An illustration of the method using 3
processor halt logs demonstrated that factor analysis can unearth the underlying mul-

tiway failure dependencies and that cluster analysis can identify the actual dependency 3
patterns.

In addition to the conventional approach of reducing the number of faults in software, 3
software dependability in Tandem systems can be enhanced by reducing the recurrence

rate and by improving the robustness of process pairs and the system configuration. The I
number of faults in software and the recurrence rate are general factors; the robustness of

process pairs and the system configuration are platform-dependent factors. The impact 3
of software fault tolerance (i.e., the robustness of process pairs) and the impact of system

6 0 I
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configuration are as significant as is the impact of the number of faults in software. A

3 complete elimination of recurrences would triple the mean time between software failures.

1.2.2 Design

After all analyses were finished, one issue stood out. This issue is recurrence. This

research developed a system-independent approach for automatically diagnosing rec

3 rences based on symptoms, for use in environments where many users run the san,.

software. Specifically, we proposed the comparison of stack traces and problem detection

3 locations as a strategy for identifying recurrences. We applied this strategy using failires

in two Tandem system software products and compared the results obtained with actual

3 diagnosis and repair logs from analysts.

The comparison showed that between 75% and 95% of recurrences can be successfully

3 identified by matching failure symptoms, such as stack traces and problem detection

locations. Less than 10% of faults are misdiagnosed. The results show that the proposed

3 automatic diagnosis of recurrences allows analysts to diagnose only one out of every

several software failures (i.e., primarily the failures caused by new faults). In the case of

3 a recurrence for which the underlying cause was identified, the diagnosis tool can rapidly

provide a solution. In the case of a recurrence for which the underlying cause is being

investigated, the diagnosis tool can prevent a repeated diagnosis by identifying previous

failures caused by the same fault. These benefits are not free of cost. Misdiagnosis is

harmful, because a single misdiagnosis can result in multiple additional failures. (Such

3 a danger exists in diagnoses by analysts, also.) The proposed approach needs to be

implemented in a pilot. Measurements need to be made to determine how well the

3 approach works and to make design trade-offs.

7
U
I
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1.3 Overview

Chapter 2 introduces the Tandem GUARDIAN system and measurements. Two types i

of measurements are described: human-generated software failure reports and on-line

event logs automatically generated by the operating system.

Chapters 3 through 6 discuss the analysis part of this work. Chapter 3 categorizes

the underlying faults of software failures, identifies the immediate effects of the faults on

the processor state, and traces the propagation of the effects on other system areas until 3
problems are detected by the operating system. The issue of recurrence is also discussed.

Chapter 4 evaluates the software fault tolerance of process pairs in the Tandem i

GUARDIAN system. Two types of analyses are performed. First, the level of soft-

ware fault tolerance achieved by the use of process pairs and the detailed reasons for 3
software fault tolerance are investigated, using human-generated software failure reports.

Next, the impact of software failures on system performance and the effectiveness of 3
the built-in single-failure tolerance of the Tandem system against software failures are

evaluated by conducting Markov reward analysis, using on-line processor halt logs. 3
Chapter 5 presents a method for analyzing multiway failure dependencies among soft-

ware and hardware modules. The method is based on multivariate statistical techniques, U

such as factor analysis and cluster analysis. The method is illustrated using on-line

processor halt logs. U
Chapter 6 identifies the factors which determine the dependability of operational

software. The chapter builds a model to describe the impact of software faults on an

overall Tandem system in the field. The model is used to evaluate the significance of the 3
factors considered and to identify areas where improvement efforts can be directed by

conducting sensitivity analysis. 3
Chapter 7 discusses a design based on the analysis results. The chapter develops

a system-independent approach for automatically diagnosing recurrences based on their 3
symptoms. A diagnosis environment is discussed, a diagnosis strategy (i.e., a set of

symptoms and an associated matching scheme for diagnosing recurrences) is proposed, 3

8

I



and a method for evaluating the effectiveness of a diagnosis strategy is presented. The

3 effectiveness of the proposed diagnosis strategy is evaluated using actual failure and

repair data collected from two Tandem system software products. Chapter 8 concludes

3 this research.

I9
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Chapter 2 3

Tandem System and Measurements 3
U

The Tandem GUARDIAN system is a message-based multiprocessor system built

for on-line transaction processing. Fault tolerance is a primary design objective. The U
design approach is to control fail-fast hardware modules using fault-tolerant software

with little wasted redundancy [28]. A Tandem GUARDIAN system of the type studied I
here consists of 2 to 16 processors, dual interprocessor buses, dual-port device controllers,

input/output devices, multiple I/O buses, and redundant power supplies.

In the Tandem GUARDIAN system, a critical system function or user application 3
is replicated on two processors as primary and backup processes, i.e., as process pairs.

Normally, only the primary process provides service. The primary sends checkpoints to 3
the backup, so that the backup can take over the function when the primary fails. The

GUARDIAN system software halts the processor it runs on when it detects nonrecov- 3
erable errors. The "I'm alive" message protocol allows the other processors to detect

the halt and to take over the primaries that were running on the halted processor. Re- 3
dundancy in the processor-device interconnect is provided by allowing each processor to

access an input/output device through a dual-port device controller. Redundancy for the 3
disk-resident database is provided by disk mirroring. This approach keeps two physical

copies of a database on different disks, which are accessible through a pair of dual-port I
disk controllers, hence providing eight paths to the database.

Figure 2.1 illustrates the software failure and recovery process in the Tandem 3
GUARDIAN system. When a fault in the system software is exercised, an error (a

first error) is generated. Depending on the processor state, this error may disappear or

10 3
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cause additional errors before being detected. The impact of a detected error ranges

from a minor cosmetic problem at the user/systera interface to a database corruption.

A software failure occurs when the system software detects nonrecoverable errors and

asserts a processor halt. Once a software failure occurs, the system attempts to recover

from the failure using backup processes on other processors. If this recovery is successful,

the system can, without noticeable degradation, tolerate the software fault that caused

the halt. If a job takeover is not successful, or if a backup process faces the same problem

after a takeover, a double processor halt occurs. Whether or not the recovery is success-

ful, the software fault is identified and a fix is made. A single software fault can cause

multiple software failures at a single site or at multiple sites.

3-Error Latency Single

SProblem Job
Error Detection Takeover

Propagation Double-• CPU Halt

Software
Recurrences Failure

Figure 2.1 Software Failure and Recovery in the Tandem GUARDIAN System

This research focuses on a class of faults and errors that cause software failures.

I Two types of data were used: human-generated software failure reports, and on-line

processor halt logs automatically generated by the operating system. Human-generated

software failure reports provide detailed information about the underlying faults, failure

U symptoms, and fixes. On-line processor halt logs provide close to 100% of reporting and

accurate timing information on processor failure and recovery. Both types of data are

3 essential for believable dependability analysis. Ideally, cross-referencing of the two types

of data should be possible for all failures. In this thesis, the evaluations described in

SSection 4.2 and Chapter 5 were performed using processor halt logs. All of the other

evaluations were performed using human-generated software failure reports.
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Human-generated software failure reports used in this study were extracted from U
the Tandem F .duct Report (TPR) database, a component of the Tandem Product 3
Reporting System (PRS) [32]. A TPR is used to report all problems, questions, and

requests for enhancements by customers or Tandem employees concerning any Tandem 3
products. Figure 2.2 shows a sample TPR. A TPR consists of a header and a body. The

header provides fixed fields for the information, such as the date, problem type, urgency, 3
customer and system identifications, and brief problem description. The body of a TPR is

a textual description of all actions taken by Tandem analysts in diagnosing the problem. 3
If a TPR reports a software failure, the body also includes the log of memory dump

analyses performed by Tandem analysts. A software failure can occur during the testing U

and operational phases. In this research, only the software failures that occurred during

the operational phase (i.e., reported from user systems) were used.

Tandem Product Report 3
TPR number:: 91-01-03 17:50 Seveirity: 2

Product Name: GUARDIAN Kernel Origination: ABC Financial Inc.
Classification: software problem 777 Lawrence Street U
Date Received: 91-01-03 14:54 Chicago, IL 60661

Date Returned: 91-01-10 10:49 System Number 0056983 3
Accompanying Information: dump file location XABC.prs.jan031750.*

Problem Description: Halts on CPUs 4 and 5.
Process $ABC runs in CPU 4 backed up in CPU 5

Response:
(all actions including dump analyses taken by Tandem abnalysts to diagnose the problem)

Figure 2.2 Tandem Product Report 3
Human-generated software failure reports contain detailed information about the un-

derlying faults, failure symptoms, and fixes. As a result, these reports can be used to I
address many software dependability issues. There are two major challenges in evaluating

manual reports. First, underreporting can be significant. It is estimated that about 80%

of field software failures in Tandem systems are not reported. Ideally, cross-referencing

between on-line event logs generated by the operating system, manual reports, and
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operator logs should be possible. Second, since these reports contain textual descrip-

Stions by analysts, they cannot be readily analyzed by automatic tools. The raw data

usually has to be reorganized into a structured database. This reorganization involves

I data categorization (i.e., generating categories and counting instances for each category),

which requires understanding the details of problems long after the cases are closed, when

I important information may no longer be available. This challenge can be serious, because

the bulk of the evaluation efforts might be spent on such data reorganization. This prob-

lem can be resolved by generating categories a priori, so that analysts can simply choose

and mark the best-matching category when they close a case. Such category generation

must be performed for each question.

I The on-line processor halt log is a subset of the Tandem Maintenance and Diagnostic

System (TMDS) event log maintained by the GUARDIAN operating system [33]. The

I processor halt log contains accurate records of occurrences of software failure and recovery

over time. Figure 2.3 shows a sample event entry extracted from the processor halt log

Sfrom a Tandem system. The information in the event was decoded to make it readable.

An event record consists of a header and a body. A header contains general information,

I such as the time of occurrence, the subsystem and device affected, and the type of event.

Typically, all errors share the same header format. In this example, the event reports

a processor halt seemingly caused by a software fault. A body contains more detailed

information about the event. The format of the body differs from event to event. In

I Figure 2.3, the body contains the apparent cause of the halt from an operating system

perspective (halt error code) and a summary of the processor state at the time of halt.

Measurements were made on five Tandem systems (one field system and four in-house

systems) for a total of five system years. Failures are rare in the Tandem system, and

only two in-house systems had enough failures for a meaningful analysis. These systems

were a Tandem Cyclone and a Tandem VLX, both used by Tandem software developers

for a wide range of design and development experiments. They were operating as beta

I sites and were configured with old hardware. Sometimes the systems were deliberately

faulted for analysis. As such, they are not representative of Tandem systems in the field.

I
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Time Subsystem Device Event
06SEP91 09:57:00 CPU CPU-2 CPU-Software-Halt 3

SECT-1
CAB-I

CPU-Type: 3
Halt-error-code: %4040

OS-Type: 0 m
P-register: %60544
E-register: %3407
L-register: %7250

Current-space-id: %147
Coldload-address: %351

Current-PCB-address: %107200
PCB-base-address: %100100

DDT-status: %10,%0,%0,%343,%120
DDT-error-bits: %0,%0,%0,%0,%2,% 0,%0,%0,%0,%0,%0,%210

Register-file: %%4040,%0,%4317,%1 ,%0,%57,%1360,%12742,%0
%170000,% I00,%0,%177440,%53,%20,%1 3

Figure 2.3 Software Failure Event in the Processor Halt Log 3
On-line event logs provide close to 100% of reporting and accurate timing information 3

on error occurrences and recovery. But there are several challenges in evaluating event

logs. First, modern computer systems are reliable, and a long period of measurement 3
(often on a number of systems) is required to conduct a meaningful analysis. The volume

of data can be huge. Software tools that can automate the basic analysis steps and 3
manage the data must be developed. Second, the meaning of a record and the format

of an event in the log can sometimes differ among versions of the operating system and 3
among machine models, which is to be expected because the software and hardware

of a system evolve. Therefore, software analysis tools must be updated according to 3
these changes. Third, the information provided by event logs may not be complete. For

example, an event report of a software failure provides the apparent cause of the halt and m

the processor state, but the underlying fault may not be directly related to the process m
that experienced the problem. It is therefore necessary to supplement the information in

14m
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I machine-generated event logs with that in manual logs, such as software failure reports

a and operator logs.

[
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Chapter 3

Fault Categorization and I
Characterization of Error

Propagation

The first step in analyzing software failure data is to understand the underlying U
software faults of failures and the symptoms of software faults. Using human-generated

software failure reports (i.e., a collection of memory dump analyses of field software

failures), this chapter categorizes the underlying faults of software failures, identifies the 3
immediate effects of the faults on the processor state, and traces the propagation of the

effects on other system areas until problems are detect,-d by the operating system. The 3
issue of recurrence is briefly discussed.

I
3.1 Fault Categorization

A collection of faults identified on a software system naturally reflects the character-

istics of the corresponding software development environment. As a result, such data can

be used for fine-tuning the development environment and for improving software quality.

Fault categorization is a frequently used method of addressing these issues. For this 3
reason, results of fault categorizations can be regar .kd as measurement-based software

fault models. Many studies have performed fault categorization using faults identified I
during the development phase [41, [3], [6]. The motivutions for such categorizations are

shared in studies of both development phase and operationai phase data. However, the

software fault profile of operational software can be quite different from that of software

during the development phase, due to differences in the operational environment and

16 I
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software maturity. Therefore, it is important to investigate the fault profile of opera-

tional software.

We studied the underlying causes of 200 TPRs that reported processor failures seem-

3 ingly due to faults in the Tandem system software [341. These TPRs include all software

failures reported by users during a time period in 1991. Table 3.1 shows a breakdown

3 of the 200 TPRs based on cause types. The numbers inside parentheses further subdi-

vide problem types. Twenty-one of the 200 TPRs were generated due to nonsoftware

I causes. The underlying causes of these failures indicated that hardware and operational

faults sometimes cause failures that appear to be caused by software faults. Our ex-

perience shows that determining whether a failure is caused by software faults is not

always straightforward, which is partly because of the complexity of systems and partly

because of close interactions between the software and hardware of the system. In 26 of

the remaining 179 TPRs, analysts believed that the underlying problems were software

faults, but they had not yet located the faults. These cases are referred to as unidentified

3 problems.

Table 3.1 Problem Types

Problem Type #TPRs

Software problem 179
- Cause (software fault) identified (153)
- Cause unidentified (26)

Nonsoftware problem 21
- Operational fault (10)
- Hardware fault (8)3 - Resource shortage due to high activity (2)
- Documentation (Manual) fault (1)

All 200

3 Table 3.2 shows the results of a fault classification using the 153 TPRs whose soft-

ware causes'were identified. The table shows both the number of TPRs and the number

3 of unique faults. The differences between the two represent multiple failures caused by

the same fault. Table 3.2 shows what kinds of faults the developers introduced. In the
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table, the faults were ordered by the difficulty of testing and identifying them. "Incor- i
rect computation" refers to an arithmetic overflow or the use of an incorrect arithmetic

function (e.g., use of a signed arithmetic function instead of an unsigned one). "Data

fault" refers to the use of an incorrect constant or variable. "Data definition fault" refers

to a ' ult in declaring data or in, defining a data structure. "Missing operation" refers

to. an omission of a few lines of source code. "Side effect of code update" occurs when 3
not all dependencies between software modules were considered when updating software.

"Unexpected situation" refers to cases in which software designers did not anticipate a 3
legitimate operational scenario, and the software did not handle the situation correctly.

Table 3.2 shows that "Missing operation" and "Unexpected situation" are the most com- 3
mon types of software faults in Tandem systems. Additional code inspection and testing

efforts can be directed for identifying such faults.

Table 3.2 Software Fault Categorization 3
Fault Category #Faults #TPRs

Incorrect computation 3 3 3
Data fault 12 21
Data definition fault 3 7
Missing operation: 20 27 U

- Uninitialized pointer (6) (7)
- Uninitialized nonpointer variable (4) (6)
- Not updating data structure on the occurrence of event (6) (9)
- Not telling other processes about the occurrence of event (4) (5)

Side effect of code update 4 5
Unexpected situation: 29 46

- Race/timing problem (14) (18)
- Errors with no defined error-handling procedures (4) (8)3
- Incorrect parameter or invalid call from user process (3) (7)
- Not providing routines to handle legitimate

but rare operational scenarios (8) (13)
Microcode defect 4 8
Other (cause does not fit any of the above class) 10 12
Unable to classify due to insufficient information 15 24

All 100 153

1
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A high proportion of simple faults, such as incorrect computations or missing oper-

5 ations, is usually observed in new software, while a high proportion of complex faults,

such as unexpected situations, is usually observed in mature software. The coexistence

3 of a significant number of simple and complex faults is not surprising, because the mea-

sured system is a large software system consisting of both new and mature components.

3 Further, some user systems run earlier versions of software, while other user systems run

later versions. Nontheless, one would like to see fewer simple faults. The existence of a

I significant proportion of simple faults indicates that there is room for improvement in

the code inspection and testing process.

A software failure caused by a newly found fault is referred to as a first occurrence;

a software failure caused by a previously reported fault is referred to as a recurrence. The

153 TPRs whose software causes were identified occurred due to 100 unique faults (Ta-

ble 3.2). Out of the 100 unique faults, 57 were diagnosed before our measurement period.

Therefore, 43 new software faults were identified during the measurement period. That

3 is, about 72% (110 out of 153) of the TPRs reported recurrences of previously reported

software faults. When one considers that a single TPR may list a rapid succession of

3 failures, which are likely to be caused by the same fault, the actual percentage of recur-

rences may be higher. This result shows that the number of faults in software (which

* can be regarded as the failure rate when only a single copy of the software runs) is not

the only important factor. The dependability of operational software can be significantly

3 improved by reducing the number of recurrences or by efficiently handling recurrences.

This issue is discussed further in Chapters 6 and 7.I
3 3.2 Software Error Propagation

Given that complete elimination of software faults in a large, continually evolving

software system is difficult, it is important that the software handles the effects of software

faults efficiently. Such a design requires understanding the effects of software faults and
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establishing efficient software fault models. While efficient models for hardware faults I
exist, the issue of software fault models is open.

Software fault models can be built from two perspectives: software engineering and

software fault tolerance. Examples of software fault models built from the software 3
engineering perspective are the results of software fault categorization. Such models

can be used for fine-tuning the software development environment and for avoiding and

eliminating software faults. Software fault models built from the software fault tolerance

perspective are considered essential for designing efficient error detection, diagnosis, and 3
recovery strategies. These models can be built based on a knowledge of faults, the effects

of software faults (i.e., errors), propagation characteristics of error, or a combination of I
these factors.

With the above in mind, we reverse-engineer field software failures to recreate the I
error propagation process (Figure 2.1) in this section. We identify the immediate effects

of software faults on the processor state and trace the propagation of the effects to other

system areas, until problems are detected by the operating system. The error propagation

modes developed in this section will be used for analyzing the symptoms of recurrences,

for the purpose of developing, in Chapter 7, a symptom-based strategy for automatically

diagnosing recurrences. I
3.2.1 First errors

The term first error is defined as the immediate effect of a software fault on the I
processor state when the fault is exercised. In other words, the first error of a software

fault refers to the first program variable that acquires an incorrect value because of

the fault. We identified the first errors from the 153 TPRs whose software causes were

diagnosed and classified them into the five categories:

(1) Single address error: an incorrect address word is developed. 3
I
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(2) Single nonaddress error: an incorrect nonaddress value is developed; instances in

this category were further divided into four subclasses: incorrect field size, incorrect

index, incorrect flag, and the rest (other).

I (3) Multiple errors: multiple errors are generated at once; instances in this category

were further divided into two subclasses: random corruption in a memory area

without regard to the data structure (e.g., a corruption caused by a stack area

overlap or a missing initialization of a memory area), and multiple regular errors

in data structure (e.g., memory management tables become inconsistent due to a

partial update or a request buffer is overwritten by another request).

(4) Other: the first error does not fit any of the above categories (e.g., an invalid request

I caused by a race condition).

(5) Unable to classify: the first error could not be identified due to insufficient infor-

mation in the TPRs.

I Table 3.3 shows the results of the classification. Most single address errors are related

3 to pointers; typically, random (unpredictable) addresses are generated. An incorrect field

size can subsequently cause corruption of a memory area, and an incorrect table or array

3 index can subsequently develop an incorrect address. Invalid requests caused by race

conditions or illegal procedure calls made by user processes were the major instances in

3 the group "Other."

3 3.2.2 Propagation modes

3 Using the information in TPRs, we attempted to reconstruct parts of the error prop-

agation process (Figure 2.1). Complete reconstruction of the error propagation process

3 for a failure is not possible even with a memory dump. We focused on two aspects of

the failures: error latency and the propagation characteristics of first errors. Because

3 of the complexity of the error propagation process and the nature of the data, it was

not possible to quantify the error latency with a high degree of precision. But it was
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Table 3.3 First Errors

Category Fraction (%) ]
Single address error 23
Single nonaddress error 38

- Field size (8) I
- Index (10)
- Flag (6)
- Other (13)

Multiple errors 18
- Random corruption (7)
- Data structure error (11)

Other 9
Unable to classify 12 3

possible to determine whether a problem was detected before the task (i.e., service to a

request) causing the first error was completed (short error latency versus significant error

latency).'

It was also possible to classify the propagation characteristics of first errors into three 3
groups: no propagation, further corruption, and quick detection. No propagation refers

to cases in which there is no possibility of error propagation, i.e., the first error is certain

to be detected on the first access. Figure 3.1 shows a real example of no propagation.

In the figure, a dotted line represents a latency. The SIOP software implements a data

communication protocol. There was a program path in the SIOP software wherein the

deletion of an element of a linked list was requested twice. When the path was exercised, 3
the system software detected the problem and asserted a processor halt on the second

request, because the element did&not exist in the linked list.

SlOP Linked list is checked Halt i
Delete element twice before deletion Assertion

Figure 3.1 No Propagation

I
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Further corruption refers to error propagation across processes and the generation of

more errors. Figure 3.2 shows an example of further corruption. In the figure, process

PK is an execution of a tool to check and change a processor configuration, such as the

number of active processes and I/O lines. Process MS collects resource usage data, and

process TM is in charge of concurrency control and failure recovery. When the operator

I ran PK with a certain option, which is not frequently used, PK used an incorrect constant

to initialize its data structure. As a result, PK overwrote (cleared) the page addresses of

I the first segment in the segment page table. The first segment is owned by MS, and MS

was running on the processor. When MS stored resource usage data, it used incorrect

addresses (addresses of zero) and corrupted the system global data. A processor halt

occurred due to address violation when TM accessed and used the address of a system

data table.

Incorrect initialization of Page addresses of

data structure (PK) segment 0 overwritten

I
performs write system global data

I
J---. 0 TM uses address of Address

I transaction table Violation

Figure 3.2 Further Corruption

Quick detection lies between the above two propagation modes. In this situation,

there is no guarantee that there will be no propagation. The problem is detected quickly,

after the first error is accessed for the first time, while the task that made the first

access is executed. Figure 3.3 shows an example of quick detection. The XIOP software

implements a data communication protocol. There was an uninitialized pointer in a

parity error-handling routine of the XIOP software. When a parity error occurred during

I 23
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a data transfer, the uninitialized pointer was used, and a processor halt occurred after a

few program statements due to an illegal address reference.

XIOP
Uninitialized pointer in Incorrect address used Address

parity error-handling routine on parity error Violation

Figure 3.3 Quick Detection

Table 3.4 shows the results of a classification of the 153 TPRs based on error propa-

gation modes and error latency. A potential danger of significant error latency is that if a

problem is detected long after the first error is developed, identification of the underlying

software fault can be difficult. A similar difficulty exists in the further corruption cases.

Once many errors are generated, identification of the underlying software fault can be

difficult. The propagation mode is typically determined by the code characteristics and

the processor state when a first error is generated and accessed. Table 3.4 shows that con-

sistency checks made by the operating system significantly change the propagation mode

profile by changing the code characteristics. The error propagation modes developed here

will be used for analyzing the symptoms of recurrences in Subsection 7.1.2.

Table 3.4 Propagation Modes

Category Fraction (%)
Short error latency 47

- No propagation (18)
- Quick detection (29)

Significant error latency 41
- No propagation (13)
- Quick detection (10)
- Further corruption (18)

Other 1
Unable to classify 11
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I 3.2.3 Problem detection

The 153 TPRs were also classified into four groups, based on how the operating sys-

tem detected the problems (Table 3.5). An address violation occurs when the operating

system detects an illegal address reference by a privileged process. This detection mecha-

nism is common in most computer systems. An address violation can be detected during

a page fault interrupt service or during an instruction execution in the form of an instruc-

tion failure. In the table, the term nonkernel represents all Tandem software products

running as privileged processes and forming the outer layer of the GUARDIAN operat-

ing system. Table 3.5 shows that, in 52% of software failures, problems are detected by

consistency checks made by the operating system.

Table 3.5 Problem Detection

Detection Mechanism Fraction (%)
Address violation 48
Kernel consistency check 19
Nonkernel consistency check 33
Other 1

3.2.4 Error propagation model

Figure 3.4 provides an overall picture of error propagation, from underlying software

faults to problem detection, by relating the information in Tables 3.2 through 3.5. A circle

or a rectangle represents a category, and the numbers inside it represent the number of

TPRs in that category and its percentage of the 153 TPRs. An arrow represents a

transition, and the associated number represents a branching probability from the source

state. For example, data faults account for 14% of the faults, and if a fault in this

category is exercised, there is a 24% chance that an incorrect address will be generated.

Figure 3.4 captures all major error propagation paths that must be eliminated.

In Figure 3.4, "Unexpected Situation" and "Single Nonaddress" error were not split

further, because there were not enough instances in each subcategory and further
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Figure 3.4 Errorat Prpgain0oe

divisions did not reveal any patterns. The dotted box in the figure represents a sig-i

nificant error latency, and an arrow that crosses the dotted box represents a transition
with a significant latency. Circles or rectangles representing "Unable to classify" groups i

and arrows representing insignificant transitions are not shown in the figure.

All instances of uninitialized pointer in "Missing Operation" group naturally generate

single address errors. About 40% of the instances of not updating data structure on i

the occurrence of event or not telling other processes about the occurrence of event in

"Missing Operation" group generate multiple regular errors in data structures. These

instances account for the transition from "Missing Operation" to "Data Structure" error. 3
Instances of "Unexpected Situation" generate a variety of first errors. Among these,

invalid requests caused by race conditions or illegal procedure calls made by user processes

account for the transition to "Other" first error group. Figure 3.4 shows that address

errors are difficult to handle with consistency checks. The data showed no instances in i
which "Single Address" error is guaranteed to be detected on the first access.
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In Figure 3.4, "No Propagation" is a desired state, because it does not threaten the

I integrity of the data in the system. It is a significant state in the measured system

because of the use of redundant data structures and consistency checks. All instances of

"No Propagation" are detected by consistency checks. In 94% of the instances of "Quick

Detection," problems are detected due to address violations; the rest are detected by

consistency checks.

"Further Corruption" is a dangerous state, in that error propagation can occur re-

cursively and multiple errors are generated until the problem is detected. Some of the

errors may break the fault containment boundary assumed for on-line recovery and thus

cause another problem later. Any process that accesses corrupted data can potentially

assert a halt, and thus a single fault can cause a variety of failure symptoms, which may

complicate the diagnosis.

3.2.5 - Symptoms of unidentified failures

Unidentified failures account for about 15% of software failures (Table 3.6). Uniden-

tified failures can cause congestion and stress to software service. The recreate problem

I in identifying and diagnosing software failures in the field was discussed in [21]. Table 3.6

summarizes the symptoms of the unidentified failures. In the majority of these failures,

I one or more memory locations were overwritten with invalid data for unknown reasons.

In seven failures, problems were detected due to inconsistencies in data structures. A

Iddata structure inconsistency indicates that sections of a data structure contain conflicting

I information. A data structure inconsistency is probably caused by a partial update of

data structure. Enforcing a stronger data encapsulation rule can reduce the number of

I this type of failures. In three cases, some analysts suspected transient hardware faults.

I 3.3 Summary

I This chapter explores new ground for building software fault models from the software

fault tolerance perspective. In addition to categorizing the underlying faults of software
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Table 3.6 Symptoms of Unidentified Failures i

Symptom # TPRs]
Data structure inconsistency 7
Data overwritten 17

- One word (8)
- Multiple words (9)O(t h er 2i

failures, we identified the immediate effects of the faults on the processor state (i.e., first i
errors) and traced the propagation of the effects on other system areas until problems

were detected by the operating system, using a collection of memory dump analyses of

field software failures.

The results showed that about 72% of reported field software failures in Tandem

systems are recurrences of previously reported faults. This shows that, in environments

where many users run the same software, the number of faults in software is not the

only important factor. Recurrences can seriously degrade software dependability in the

field. Clearly, the impact of recurrences on system dependability must be modeled and

evaluated. Missing operations and not providing routines to handle rare but legitimate

operational scenarios are the most common types of software faults in Tandem systems.

Additional code inspection and testing efforts can be directed for identifying these faults.

The results showed the coexistence of a significant proportion of simple and complex

faults, which is not surprising because the measured system is a large software system i
consisting of both new and mature components. The existence of a significant proportion

of simple faults indicates that there is room for improvement in the code inspection and i
testing process.

The data showed that there is a 60% chance that a single program variable acquires I
an initial, incorrect value when software faults are exercised. In about 20% of the cases,

multiple program variables are affected simultaneously. Once errors are generated, the

three major error propagation modes are: the first error is certain to be detected on the

first access by consistency checks (no propagation, 31%); the problem is detected shortly
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after the first error is accessed and used (quick detection, 39%); and the first error causes

more errors, which are detected after a significant latency (further corruption, 18%).

In about half of the failures, problems are detected by consistency checks; in the other

half, problems are detected due to address violations. The error propagation modes

developed will be used for analyzing the symptoms of recurrences in order to develop (in

Subsection 7.1.2) a symptom-based strategy for automatically diagnosing recurrences.
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Chapter 4

Evaluation of Software Fault I
Tolerance

I
This chapter evaluates the software fault tolerance of process pairs in the Tandem

GUARDIAN system. Two types of analyses are performed. First, the level of software

fault tolerance achieved by the use of process pairs and the detailed reasons for software

fault tolerance are investigated using human-generated software failure reports. Next,

the impact of software failures on system performance and the effectiveness of the built-

in single-failure tolerance of the Tandem system against software failures are evaluated I
by conducting Markov reward analysis using on-line processor halt logs.

4.1 Software Fault Tolerance of Process Pairs

It has been observed that process pairs allow the Tandem system to tolerate cer-

tain software faults [27], [1]; that is, in many processor halts caused by software faults,

the backup of a failed primary can continue the execution. This observation is rather

counter-intuitive, because the primary and backup run the same copy of the software.

The phenomenon was explained by the existence of subtle faults, often referred to as

transient software faults, that are not exercised again on a restart of the failed software.

Field software faults were not identified during the testing phase, and many of them 3
could be transient in nature. Since the technique is not explicitly intended for tolerating

software faults, study of field data is essential for understanding the phenomenon and for

measuring the effectiveness of the technique for tolerating software faults.

I
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This section uses human-generated field software failure reports to investigate the

user-perceived ability of the Tandem system to tolerate faults in its system software [341.

Two conditions must be mentioned. First, only the faults in the system software that

cause processor failures are considered. Thus, we are not looking at the entire set of

software faults. Second, only the software fault tolerance achieved specifically by the use

of process pairs is considered.

The evaluation is important because, although process pairs are specific to Tandem

systems, it is an implementation of the idea of checkpointing and restart, which is a

general approach. Clearly, software dependability can be improved by designs exploiting

such knowledge in similar environments. This evaluation also important because there

are no efficient techniques available for achieving software fault tolerance in large, contin-

ually evolving software systems. Recently, attempts have been made to make use of the

3 transient nature of some software faults for tolerating these faults in user applications

using checkpointing and restart [35], [36].

U 4.1.1 Measure of software fault tolerance

I There were 179 TPRs generated because of software faults during the measured pe-

riod (Section 3.1). Since each TPR reports just one problem, sometimes two TPRs are

I generated as a result of a multiple processor halt. There were five of these cases, making

a total of 174 software failures during the measured period. Table 4.1 shows the severity

of the 174 software failures. A single processor halt implies that the built-in single-failure

3 tolerance of the system masked the software fault that caused the halt. All multiple pro-

cessor halts were grouped because, in the Tandem system, a double processor halt can

3 potentially cause additional processor halts because of the system architecture. That is,

if the system loses a set of disks as a result of a double processor halt and the set of

3 disks contains files required by other processors, additional halts can occur in the other

processors. (In the Tandem system, a disk is connected with two processors through

* dual-port disk controllers.) There was one case in which a software failure occurred in

the middle of a system coldload.

1



I

Table 4.1 Severity of Software Failures

Severity # Failures]

Single processor halt 138
Multiple processor halt 31
During system coldload 1
Unable to classify 4

All 174 I

In this evaluation, the term software fault tolerance (SFT) refers to the system's i
ability to tolerate software faults. Quantitatively, it is defined as

SFT = number of software failures in which a single processor is halted (4.1) i

total number of software failures

SFT represents the user-perceived ability of the system to tolerate faults in its system I
software due to the use of process pairs.

Table 4.1 shows that process pairs provide a significant level of software fault toler- I
ance in distributed transaction-processing environments. The measure of software fault

tolerance is estimated to be 82% (138 out of 169). This measure is based on reported

software failures. The issue of underreporting was discussed in [1]. The consensus among

experienced Tandem engineers is that about 80% of software failures are not reported as

TPRs and that most of them are single processor halts. If that assessment is true, then 3
the software fault tolerance may be as high as 96%. I
4.1.2 Outages due to software

This evaluation first focused on the multiple processor halts. For each multiple pro- i
cessor halt, we investigated the first two processor halts to determine whether the second

halt occurred on the processor executing the backup of the failed primary process. In

these cases, we also investigated whether the two processors halted because of the same

software fault.

Table 4.2 shows that in 86% (24 out of 28, excluding "Unable to classify" cases) of

-he multiple processor halts, the backup of the failed primary process was unable to
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continue the execution. In 81% (17 out of 21, excluding "Unable to classify" cases) of

these halts, the backup failed because of the same fault that caused the failure of the

primary. In the remaining 19% of the halts, the processor executing the backup of the

failed primary halted because of another fault during job takeover. The level of software

fault tolerance achieved with process pairs is high, but not perfect. A single fault in

3 the system software can manifest itself as a multiple processor halt, which the system is

not designed to tolerate. About half of the multiple processor halts resulted in system

I coldloads. The data showed that, in most situations, the system lost a set of disks that

contained files required by other processors as a result of the first two processor halts,

and other processors also halted. This result shows the major failure mode of the system

* because of software.

Table 4.2 Reasons for Multiple Processpr Halts

U Reasons for Multiple Processor Halts # Failures]

The second halt occurs on the processor executing the 24
backup of the failed primary.

- The second halt occurs due to the same fault (17)
that halted the primary.

- The second halt occurs due to another fault (4)
during job takeover.

- Unable to classify. (3)
The second halt is not related to process pairs. 4

- The system hangs. (1)
- Faulty parallel software executes. (1)
- There is a random coincidence of two indepen- (1)

dent faults.
- A single processor halt occurs, but system (1)

coldload is necessary for recovery.
Unable to classify. 3

3 All 31

3
I
U
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4.1.3 Characterization of software fault tolerance U
The information in Table 4.1 poses the question of why the Tandem system loses only

one processor in 82% of software failures and, as a result, tolerates the software faults that

cause these failures. We identified the reasons for software fault tolerance in all single

processor halts and classified them into several groups. Table 4.3 shows that, in 29% of

single processor halts, the fault that causes a failure of a primary process is not exercised 3
again when the backup reexecutes the same task after a takeover. These situations occur

because some software faults are exposed in a specific memory state (e.g., running out of 3
buffer), on the occurrence of a single event or a sequence of asynchronous events during

a vulnerable time window (timing), by race conditions or concurrent operations among

multiple processes, or on the occurrence of a hardware error.

Table 4.3 Reasons for Software Fault Tolerance

Reasons for Software Fault Tolerance Fraction (%)J I
The backup reexecutes the failed task after 29
takeover, but the fault that caused a failure of3
the primary is not exercised by the backup.

- Memory state (4)
- Timing (7)
- Race or concurrency (6)
- Hardware error (4)
- Others (7)

The backup, after takeover, does not automati- 20
cally reexecute the failed task. •
It is the effect of error latency. 5
A fault stops a processor running a backup. 16
The cause of a problem is unidentified. 19 3
Unable to classify. 12

I
Figure 4.1 shows a real example of a fault that is exercised in a specific memory

state. The primary of an I/O process pair, which is represented by SIOP(P) in the 3
figure, requested a buffer to serve a user request. Because of the high activity in the

processor executing the primary, the buffer was not available. However, because of a
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software fault, the buffer management routine returned a "successful" flag, instead of an

"unsuccessful" flag. The primary used the returned, uninitialized buffer pointer, and a

halt occurred in the processor running the primary because of an illegal address reference

by a •-;vileged process. Clearly, such a situation was not tested during the development

p1 Since a memory dump is taken only from a halted processor in a production

system, a memory dump of the processor running the backup is not available. Our best

guess is that the backup process served the request again after takeover but did not have

I a problem, because a buffer was available on the processor running the backup.

3 CPU A CPU B

SlOP(P) Buffer Manager SIOP(B) Buffer Manager

request buffer reaest buffer

"successful" "successful"
buffer pointer buffer pointer

10 Request 10 Request

10 Buffer Area 1E) M

I

Figure 4.1 Differences between the Primary and Backup Executions

Table 4.3 also shows that, in 20% of single processor halts, the backup of a failed

I primary process does not serve the failed request after a successful takeover, because some

faults are exposed while serving requests that are important but are not automatically

resubmitted to the backup upon a failure of the primary. Figure 4.2 illustrates an example

of these situations. (This example was discussed in Subsection 3.2.2, Figure 3.2.) In the

figure, process PK is an execution of a tool to check and change a processor configuration,

35I



I
such as the number of active processes and I/O lines. Process PK does not run as

a process pair because, if the processor being monitored or reconfigured halts while

executing PK, there is no need to monitor or reconfigure the halted processor any longer.

Process MS collects resource usage data, and process TM is in charge of concurrency

control and failure recovery. Both MS and TM run as process pairs.

Operator Command CPUA I
Reserved Physical
Segments Memory 3

PK MS % System Data %0

Oao I
.- "" Get Transaction MB

T()-"" Table Address

Figure 4.2 Faults Exposed by Non-Process Pairs 3
When the operator ran PK with a certain option, which is not frequently used, PK I

used an incorrect constant to initialize its data structure. As a result, it overwrote

(cleared) the page addresses of the first segment in the segment page table. The first 3
segment is owned by MS, and MS was running on the processor. When MS stored
resource usage data, it used incorrect addresses (addresses of zero) and corrupted the 3
system global data. A processor halt occurred as a result of an address violation when
TM accessed and used the address of a system data table. The backups of failed primaries 3
would take over, but they would not have problems, because PK was running only onthe halted processor. I
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Another example of faults exposed by tasks that do not run as process pairs is the

3 faults that cause processor failures during the execution of the operator requests for

reconfiguring I/O lines. Utilities to perform these reconfigurations run as process pairs,

3 but the operator command such as "add a line" is not automatically resubmitted to the

backup, because it is an interactive task that can easily be resubmitted by the operator

if the primary fails. Suppose that an operator's request to add an I/O line caused a

failure of the primary. In this situation, the operator would typically recover the halted

I processor, rather than submit the same request to the backup. If the operator wants to

repeat the same request, he or she would normally repeat it on the primary after the

halted processor is reloaded. If the operator submits the request to the backup instantly

upon a failure of the primary, one of two situations can be expected: the backup also

halts, or the backup serves the request without any problem because of the reasons in

3 Table 4.3.

In the above examples, the task (i.e., process PK or a command to add an I/O line)

3 does not survive the failure. But process pairs allow the other applications on the halted

processor to continue to run. This situation is not strictly software fault tolerance but a

3 side benefit of using process pairs. If these failures are excluded, the estimated measure

of software fault tolerance is reduced to 77%.

* Another reason for the software fault tolerance is that some software faults cause errors

that are detected after the service that caused the errors finishes successfully (effect of

3 error latency). Figure 4.3 shows an example of these situations. The figure shows a data

transfer between two primary I/O processes: SIOP(P) and XIOP(P). The underlying

I software fault is an extra line in the SIOP software that causes SIOP(P) to transfer one

more byte than is necessary. This fault does not always cause a problem, because the size

of a buffer is usually bigger than the size of a message. When a message and a buffer had

equal sizes, the first byte in the end tag of the buffer was overwritten. This corruption

did not affect the data transfer, because tags are not a part of data area. (The tags are

3 used to check the integrity of a data structure, but for performance reasons, they are not

checked after every data transfer.) The data transfer was completed and checkpointed to

3 37I



I

the backup. The corruption in the end tag was found later, when SIOP(P) returned the I
buffer to the buffer manager. The buffer manager checked the integrity of the begin and 5
end tags, found a corruption, and asserted a halt of the processor it runs on ("CPU A" in

the Figure 4.3). The backups of the failed primaries would take over, but they would not

have problems because the data transfer that caused the error was already completed.

The difference between this case and the first group of cases listed in Table 4.3 is that 3
the software function that caused the failure of the primary did not have to be executed

again in the backup. 3
CPU A

SlOP(P)

XIOP(P)

-
Data Transfer

Tag Buffer Tag a- ý _

Extra line: Byte to Transfer += 1

Checkpoint O3

, SlOP(B) 3
Figure 4.3 Effect of Error Latency

Table 4.3 also shows that 19% of single processor halts are failures of backup pro-

cesses. This result indicates that the software fault tolerance does not come without cost; 3
the added complexity due to the implementation of process pairs introduces additional

software faults into the system software. The estimated measure of software fault toler- 3
ance (77%) is adjusted again to 72% when these failures are excluded. All unidentified

failures were single processor halts, which is understandable, because these are caused I
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-- by subtle faults that are very difficult to observe and diagnose. The reason that an

I unidentified problem caused a single processor halt is unknown. Based on their symp-

toms, we speculate that a significant number of unidentified problems were single pro-

3 cessor halts because of the effect of error latency.

3 4.1.4 Discussion

The results in this section have several implications. First, subtle faults exist in

all software, but software fault tolerance is not achieved if the backup execution is a

3 replication of the original execution (the same sequence of events in the same processor

state). The results show that the source of software fault tolerance lies in differences

between the original and backup executions in the processing environment (i.e., the pro-

cessor state and the sequence of events). The loose coupling between processors in the

3 measured system provides these differences. This result confirms that there is another

dimension for achieving software fault tolerance in distributed environments. The ac-

3 tual level of software fault tolerance achieved by the use of process pairs will depend on

the degree of difference between the original and backup executions in the processing

3 environment. Each processor in a Tandem system has an independent processing envi-

ronment; therefore, the system naturally provides such differences. (The advantages of

3 using checkpointing, as compared with lock-step operation, in tolerating software faults

was discussed in [27].) The high level of software fault tolerance observed is probably also

because the measured operating system is a mature software system that has primarily

subtle faults.

Second, the results indicate that process pairs can also allow the system to tolerate

3 nontransient software faults, because software failures can occur while the system exe-

cutes important tasks that are not automatically resubmitted to the backup on a failure

3 of the primary. In this case, the failed task does not survive, but process pairs allow the

other applications on the failed processor to survive.

3 Third, short error latency with error confinement within a transaction is desirable

[37]. In actual designs, such a strict error confinement might be rather difficult to achieve.

3 39
3



I

In Tandem systems, the unit of error confinement is a processor, not a transaction [27]. 1
Errors generated during the execution of a transaction may be detected during the ex-

ecution of another transaction. Interestingly, long error latency and error propagation

across transactions sometimes help the system tolerate software faults. This result should

not be interpreted to suggest that long error latency or error propagation across transac-

tions is a desirable characteristic, but rather as a side effect of the system having subtle 3
software faults. Long error latency and error propagation across transactions can make

both on-line recovery and off-line diagnosis difficult. 3
Finally, an interesting question is: if process pairs are good, are process triples better?

Our results show that process triples may not necessarily be better, because the faults 3
that cause double processor halts with process pairs may cause triple processor halts with

process triples. I

4.1.5 -First occurrences vs. recurrences I
Table 4.4 compares the severity of the three types of software failures using the 174 I

software failures. There were two special cases ("Others") in the table: a multiple pro-

cessor halt that occurred because of a parallel execution of faulty code (a system coldload 3
was not required), and a software failure that occurred in the middle of a system cold-

load. With only a single observation in each case, the significance of these situations is 3
unclear, and they were not considered in the subsequent analysis.

Table 4.4 Severity of Software Failures by Failure Type

Failure #Failure #Double #System Severity #Ot1r

Type Instances CPU Halts Coldloads Unclear 1

First occurrence 41 9 6 1 1
Recurrence 107 19 12 3 1
Unidentified 26 0 0 0 0

I
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Table 4.4 indicates that a recurrence is slightly less probable to cause a double pro-

cessor halt than is a first occurrence. The binomial test was used to test this observation,

because it does not require an assumption about the underlying distribution to construct

a confidence interval [38]. Each failure was treated as a random trial with the probability

of a double processor halt being 0.23 (9 out of 39, following the statistics for the first

occurrence). The hypothesis that the probability of a recurrence causing a double proces-

sor halt is equal to that of a first occurrence causing a double processor halt was tested,

by calculating the probability of having 19 or fewer double processor halts out of 103

trials. The p-value was 0.16; that is, the hypothesis was rejected at the 20% significance

Ievel. Although the trend is not strong, a recurrence is less probable to cause a double

processor halt than is a first occurrence. This result is probably because, if a fault is

likely to cause a double processor halt (a possible outage in Tandem systems), it gets

more attention and a fix is propagated and installed more promptly. The result is that

the fault-is less probable to cause recurrences over the long run. Table 4.4 also indicates

that a recurrence is less probable to cause a system coldload than is a first occurrence.

The p-value was 0.18 in this case.

Two of the six system coldloads due to first occurrences were single processor halt

situations (Table 4.2). These two failures capture the secondary failure mode of the

system because of software, wherein a system is coldloaded to recover from a severe,

single processor halt.

4.2 Impact of Software Failures on Performance

One key measure in evaluating gracefully degraded systems is the impact of failures

on system performance or service capacity. Performability models [39] and reward mod-

els [40] have been widely used to evaluate performance-related dependability measures

in recent years. To evaluate the loss of service incurred by software failures and the

effectiveness of built-in single-failure tolerance of the Tandem system against software

failures, a Markov reward analysis was performed [41], [42]. The processor halt log
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collected from a 16-processor, in-house Tandem Cyclone system was used (Chapter 2). 3
The measurement period was 23 months.

We built a continuous-time Markov model using the processor halt log. Figure 4.4

shows the model structure. In the figure, Si represents the system state in which there

are i failed processors because of software faults, and n represents the total number of

processors in the system. In the model, transition rates between states were estimated 3
using

_ total number of transitions from Si to Sj (4.2)

-ij = cumulative time the system was in Si

r =003 = * I
8 rl, = . 8r 1 3 ,167

r ,0 =4.336 r2,1 =50.70 r16,15 = 1393.5

Figure 4.4 Measurement-Based Markov Model 3
Two reward functions were defined in the analysis. The first function (NSFT) assumes 3

no fault tolerance. In this function, each processor halt causes degradation, and the loss

of service is proportional to the total number of processors halted. The second function 3
(SFT) reflects the fault tolerance of the Tandem system. In this function, the first

processor halt causes no degradation. For additional processor halts, the loss of service I
is proportional to the number of processors halted. The difference between the two

functions allows an evaluation of the improvement in service achieved by providing the

built-in single-failure tolerance. 3
NSFT (No Single-Failure Tolerance):

ri = 1 - if 0 < i < n (4.3) 3
n
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SFT (Single-Failure Tolerance):I I{fi
ri -1 -i1 ifO <i < n (4.4)m n

3 0 ifi = n

Given the Markov reward model described above, the expected steady-state reward

rate, Y, can be estimated from [40]

Y = Z'pir, , (4.5)

where pi is the steady-state probability of the system being in state i. The steady-

state reward rate represents the relative amount of useful service the system can provide

per unit of time in the long run; it is a measure of service-capacity-oriented software

availability. The steady-state reward-loss rate (or simply, reward loss), 1 - Y, represents

the relative amount of useful service lost per unit of time because of software failures.

If we consider a specific group of failures in the analysis, the reward loss quantifies the

service loss incurred by this group of failures.

The results of analysis are given in Table 4.5. The table shows the estimated reward

loss incurred by software and nonsoftware failures, with SFT and NSFT. The bottom row

of the table shows the improvement in service time (i.e., decrease in reward loss) achieved

by providing the fault tolerance. The single-failure tolerance of the measured system

reduces the service loss incurred by software failures by 89%, which clearly demonstrates

the effectiveness of the single-failure tolerance of the measured system against software

faults and corroborates the results obtained in the previous section. The table also shows

that the single-failure tolerance reduces the service loss incurred by nonsoftwai-e failures

by 92% and that software problems account for 30% of the service loss in the measured

system (with SFT).

A census of Tandem system availability [1] has shown that, as the reliability of hard-

ware and maintenance improves significantly, software is the major source (62%) of out-

ages in the Tandem system. It is inappropriate, however, to directly compare our number
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Table 4.5 Estimated Loss of Service

Measure ii Software Nonsoftware All I
I - Y .00062 .00205 .00267

NSFT I
Percent 23.2 76.8 100

I - Y .00007 .00016 .00023
SFT Percent 30.4 69.6 100

Improvement II 89% _92% 91% 1

(30%) w:th Gray's, because Gray's is an aggregate of many systems and ours is a mea- -
surement of a single syste.. Besides, the sources of the data and analysis procedures are

different. Since the analysis performed in this section is based on automatically generated 3
event logs, some nonsoftware problems requiring the replacement of faulty hardware can

result in long recovery times and therefore great reward loss. Also, because of the exper- I
imentai nature of the measured system, nonsoftware problems caused by operational or

environmental faults may have been exaggerated. An operational or environmental fault U
can potentially affect all processors in the system.

4.3 Summary 3
This chapter evaluates the software fault tolerance of process pairs in the Tandem 3

GUA RDIAN system using human-generated software failure reports and on-line pro-

cessor halt logs automatically generated by the operating system. The results of an 3
evaluation using software failure reports showed that hardware fault tolerance buys soft-

ware fault tolerance: process pairs in Tandem systems tolerate about 70% of reported 3
field faults in the system software that cause processor failures. This result shows that,

in a distributed transaction-processing environment, a significant level of software fault 3
tolerance can be achieved by the use of checkpointing and restart, a technique for tolerat-

ing hardware faults. The loose coupling between processors, which results in the backup 3
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execution (the processor state and the sequence of events occurring) being different from

the original execution, is a major reason for the measured software fault tolerance.

The results indicated that the actual level of software fault tolerance achieved by the

use of checkpointing and restart depends on the degree of difference in the processing

environment between the original execution and restart and on the proportion of subtle

faults in software. While process pairs may not provide perfect software fault tolerance,

the implementation of process pairs is not as prohibitively expensive as is developing and

I maintaining multiple versions of large software programs.

The results of Markov reward analysis using processor halt logs showed that the single-

failure tolerance of the measured system reduces the service loss incurred by software

failures by 89%. This result corroborates the results obtained using software failure

reports. The results also showed that single-failure tolerance reduces the service loss

incurred by nonsoftware failures by 92% and that software failures account for 30% of

the service loss in the measured system (with SFT).

I
I
I
I
I
I
I
I
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Chapter 5 1
I

Analysis of Failure Dependency
I

Failure dependency is a serious concern in parallel and fault-tolerant systems. Failure

dependencies between two components can be analyzed using correlation coefficients. 3
However, such dependencies can exist among multiple components. This chapter presents

a method for analyzing multiway failure dependencies among software and hardware 3
modules [431. The method is developed based on multivariate statistical techniques,

such as factor analysis and cluster analysis. The method is illustrated using the on-line I
processor halt log collected from an in-house Tandem VLX system for seven months

(Chapter 2).

5.1 Processor Halt Matrix

The measured period was first divided into n equal intervals of 30 minutes each. Next, 3
an (n x 8) matrix, termed the processor halt matriz, was constructed using the processor 3
halt log. Both software and nonsoftware failures were used to build the matrix. The

element (ij) of this matrix has a value of 1, if processor j halts during the i-th time 3
interval; otherwise, it has the value of 0. The processor halt matrix can be regarded as n

samples of eight random variables. The j-th column of the matrix represents the sample

halt history of processor j, while the i-th row of the matrix represents the state of the

eight processors in the i-th time interval.

I
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5.2 Correlation Analysis

I Tbe elements of the processor halt matrix were treated as real numbers, and the cor-

relation between each pair of the random variables was calculated. Table 5.1 shows the

resulting correlation matrix. Element (i, j) of the correlation matrix represents the halt

correlation between processors i and j. Most of the correlations are low, but eight corre-

lation coefficients are greater than 0.2 and four are greater than 0.7. These correlations

require further investigation, because analysis shows that even low correlations can have

a significant impact on system unavailability [44].

1 Table 5.1 Processor Halt Correlation

I Processor 0 1 2 3 4 5 6 7
0 1.0
1 .0 1.0
2 -.00 .0 1.0
3 -.00 .0 -.00 1.0
4 .97 .0 .22 -.00 1.0
5 -.00 .0 -.00 .45 -.00 1.0
6 .0 .0 .77 -.00 .77 -.00 1.0
7 .0 .0 -.00 .77 -.00 .36 .40 1.0

I
3 5.3 Factor Analysis

3 The limitation of correlation analysis is that a correlation coefficient can quantify only

the relationship between two variables. To investigate the multiway failure dependencies

3 among the processors, factor analysis was performed. Factor analysis uncovers multiway

statistical relationships among the observed variables by finding a set of underlying factors3 that link these variables [45]. For example, in a distributed system, a disk crash can

account for the failures of those machines whose operations depend on a set of critical

3 data on the disk. The disk state can be considered as a common factor of machine

failures.

I
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Let X = (xi, ... , xP)T be a vector of normalized, observable random variables. The

factor model assumes

X =AF + E, (5.1)

where A = (Aij) (i = 1,...,p; j - 1,...,k) is a matrix of constants called factor i
loadings, F = (fl, ... , fR)T is a random vector of elements called common factors, and

E = (el, ... , ep)T is a random vector of elements called unique factors. It is assumed that

all common and unique factors are uncorrelated with each other, common factors are

normalized, and unique factors have zero means. The variance of xi can be expressed as

Variance(xi) = 1 E k A?. + i',, (5.2)
j= 

1-

where Oi is the variance of ej. The first term in the extreme right side of Equation (5.2),

referred to as communality, is the amount of variance of xi that is shared with other

variables through common factors, while the second term is the amount of variance due

to the unique variation of xi. The correlation coefficient between xi and fi, which is Aij,

represents the extent to which xi depends on common factor fi, and A•, represents the

amount of variance of xi accounted for by common factor fh.

Recall that the processor halt matrix is regarded as a collection of samples of eighti

random variables. These random variables can be represented by a random vector X =

(Xl, ... , X8 )T, where xi corresponds to the halt behavior of processor:. I
The SAS procedure FACTOR was used to perform factor analysis [46]. The results

are shown in Table 5.2. Four common factors were identified. The matrix in the middle

of the table is the A matrix, and the last column shows communality. The last two rows

show the amount of variance explained by the common factors and their percentages of

the total variance. 3
According to [45], factor loadings greater than 0.5 are considered significant. However,

in a reliability analysis, factor loadings lower than 0.5 can be significant. Processor 1

showed independent behavior. Its contribution to the common factors, as measured by

the communality, is zero. The behavior of processor 1 presents a unique factor. Closer

examination showed that processor 1 experienced no halts. Common factor 2 captures
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Table 5.2 Factor Patterns of Processor Halt

* iCommon Common Common Common

Processor Factor 1 Factor 2 Factor 3 Factor 4 Communality
0 .997 -.004 -.069 .023 1.0
1 .0 .0 .0 .0 .0
2 .061 .012 .853 -.133 .75
3 .001 .999 -.011 .021 1.0
4 .982 -.000 .188 -.018 1.0
5 -.001 .447 -.005 .009 .20
6 .047 -.002 .862 .506 1.0
7 -.007 .762 .090 .641 1.0

Variance 1.965 1.781 1.519 .685
Fraction (%) 24.6 22.3 19.0 8.6

I
the multiway dependency among processors 3, 5, and 7, although the contribution of

processor 5 is small (0.4472, i.e., 20% of its variance is explained by this factor). Common

factor 3 captures the multiway dependency among processors 2, 4, and 6. Again, the

contribution of processor 4 is small (0.1882, i.e., 3.5% of its variance is explained by this

factor).

I Partly because of the experimental nature of the measured system, and partly be-

cause on-line processor halt logs do not provide the information of underlying causes of

processor halts, it is not easy to make accurate interpretations of the common factors.

We speculate that common factors 2 and 3 are attributed to the failures of process pairs

caused by software faults and experiments related to the development of software running3 on multiple processors. Processors 0 and 1, processors 2 and 3, and processors 4 and 5

of the measured system shared dual-port disk controllers. However, the results of factor

analysis show that this architectural coupling did not cause halt dependencies between

the processors.

I
I
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5.4 Cluster Analysis I
Although factor analysis is a valuable technique for characterizing multiway depen-

dencies, it does not provide detailed information on patterns which relate the measured

variables. To investigate how the processors in the measured system halted, a statistical I
clustering technique was used.

Each row of the processor halt matrix (the state of the eight processors in each time I
interval), which is referred to as an observation, was regarded as a point in an eight-

dimensional space. The distance between two observations was defined as the number

of mismatches between pairs of elements in the same columns of the corresponding two

rows. Only the observations in which at least one processor halted were clustered.

The FASTCLUS procedure of the SAS software package was used to perform sta-

tistical clustering [46]. FASTCLUS is based on the k-means algorithm, a popular non-

hierarchical clustering technique, which groups observations into k nonempty clusters

(Ci, C 2, ... , Ck) that minimize the total sum of the squares of the Euclidean distances

of the cluster members from their centroids [47]: 3
k

D = _ II y-7 II2• (5.3)
j=1 3;EC,

In the equa n, xi is the i-th observation, and '7 is the centroid of cluster Ci, i.e.,

1 X ,, (5.4)

where mc, is the number of observations in cluster Cj. In this analysis, the distance

between the two observations is I
8

II x, - xi 11 = E(xi. ( xi,.), (5.5)
n=1

where ED represents the exclusi',e-OR operation. Note that xi represents the i-th row

of the processor halt matrix in cluster analysis. In the factor analysis discussed in the

previous section, xi represented the i-th column of the matrix. This difference allows

cluster analysis to identify the dependency patterns.
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Table 5.3 summarizes the results of cluster analysis. The cluster centroids, which are

the column vectors in the table, represent the processor halt patterns in the measured

system. Each element of a cluster centroid represents the probability that the corre-

sponding processor will halt in that pattern. For example, in the pattern represented by

cluster 1, processor 0 always halted, while processor 1 never halted. Clusters 4 and 5

capture the patterns which involve three processors. There were three time intervals in

which processors 2, 4, and 6 halted, and there were another three time intervals in which

I processors 3, 5, and 7 halted. Note that the cluster analysis collaborates with the factor

analysis: clusters 1, 3, 4, and 5 capture the patterns indicated by common factors 1, 4,

3, and 2, respectively, while cluster 2 captures the independent halts of processor 5 as

i indicated by its low communality in Table 5.2.

Table 5.3 Centroids of Processor Halt Clusters

Processor Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster

0 1.0 0 0 0 0
1 0 0 0 0 0
2 0 0.08 0 1.0 0
3 0 0 0 0 1.0
4 1.0 0 0 1.0 0
5 0 0.92 0 0 1.0
6 0 0 1.0 1.0 0
7 0 0 1.0 0 1.0

#Observation 42 13 2 3 3
I Fraction (%) 66.7 20.6 3.2 4.8 4.8

I
5.5 Summary

This chapter presents a method for analyzing multiway failure dependencies among

i software and hardware modules. The method was developed based on multivariate sta-

tistical techniques, such as factor analysis and cluster analysis. An illustration of the

method using processor halt logs demonstrated that factor analysis can unearth the

I
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underlying multiway failure dependencies and that cluster analysis can identify the ac-I

tual dependency patterns.

I

I
I
I
I
I
I
I

I
I
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i Chapter 6

i Reliability Modeling of Operational
i Software
I

Software reliability models attempt to estimate the reliability of software. Many

I models have been proposed [9], [48]. These models typically attempt to relate the history

of fault identification during the development phase, verification efforts, and operational

profile. The primary focus is on the software development process, and the underlying

assumptions are that software is an independent entity and each software fault has the

same impact.

The results from the previous chapters indicated that there are other factors that

significantly impact the dependability of operational software. First, there are both

highly visible and less visible software faults. A single, highly visible software fault can

cause many field failures, and recurrences can seriously degrade software dependability in

the field. Second, for a class of software such as operating systems, the fault tolerance of

the overall system can significantly improve software dependability by making the effects

of software faults invisible to users. Clearly, dependability issues for operational software

in general can be quite different from those for the software in the development phase.

This chapter asks the question: which factors determine the dependability of the mea-

sured operating system? Using the software failure and recovery characteristics identified

i in the previous chapters, this chapter builds a model that describes the impact of faults

in the Tandem GUARDIAN operating system on the reliability of an overall Tandem

system in the field. The model is used to evaluate the significance of the factors con-

sidered and to identify areas where improvement efforts can be directed by conducting

sensitivity analysis [49].
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6.1 Model Construction m

We considered a hypothetical Tandem system whose software reliability characteris- I
tics are described by the parameters in Table 6.1. In this analysis, the term software

reliability means the reliability of an overall system when only the faults in the system I
software are considered. All parameters in the table except A and it were estimated

based on the measured data (Section 3.1 and Chapter 4). The values of A and it were

determined to mimic the 30 years of software mean time between failure (MTBF), and

the mean time to repair (MTTR) characteristics reported in [1]. Thus, the objectives of

the analysis were to model and evaluate reliability sensitivity to various factors, not to

estimate the absolute software reliability.

Table 6.1 Estimated Software Reliability Parameters I
Failures:m

First Occurrence Recurrence Unidentified

Failure rate Ay = 0.24A A. = 0.61A A,, = 0.15A
Prob(double CPU halt software failure) Cf = 0.23 Cd, = 0.18 Cd, = 0.0
Prob(system failureldouble CPU halt) Cf= 0.44 C.d,= 0.63 Cadu = 0.0
Prob(system failure due to

severe, single CPU halt) C881 = 0.05 C8sr = 0.0 C = 0.0
Failures:m

Software failure rate = A = 0.32/yearRecovery:

Recovery rate = = 1/hour

I
In Table 6.1, "Prob(double CPU haltlsoftware failure)" is the probability that a dou-

ble processor halt (i.e., the failure of a process pair) occurs given that a software failure

occurs. Similarly, "Prob(system failureldouble CPU halt)" is the probability that a sys-

tem failure occurs given that a double processor halt occurs. In this analysis, a system

failure was defined to occur when more than half of the processors in the system failed.

These two parameters are used to describe the major failure mode of the system because I
of software. The parameter "Prob(system failure due to severe, single CPU halts)" rep- I
resents the secondary failure mode, which captures single processor halts severe enough
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to cause system coldloads. The table shows these probabilities for first occurrences,

recurrences, and unidentified failures.

Based on the parameters in Table 6.1 and on the following assumption, we built a

continuous-time Markov model to describe the software failure and recovery in a hypo-

thetical eight-processor Tandem system in the field.

Assumption 1: The time between software failures in the system has an exponen-

tial distribution, and the three types of failures (first occurrence, recurrence, and

unidentified) are randomly mixed.

This assumption was necessary, because determining the above characteristics for a single

system would require a minimum of a few hundred years of measurements. The assump-

tion could not be validated using the measured data, because the measured data was

collected from a large number of user systems running different versions of the operating

system and having different operational environments and system configurations. Given

this situation, the assumption seemed a reasonable choice.

Figure 6.1 shows the Markov model. In the model Si, i = 0, ..,4 represents that

i processors are halted because of software faults. A system failure is represented by

the Sd0,•, state. To evaluate software reliability, no recovery from a system failure was

assumed. That is, the system failure state is an absorption state. The R, state represents

an intermediate state in which the system tries to recover from an additional software

3 failure (i-th processor halt) using process pairs.

If a software failure occurs during the normal system operation (i.e., when the system

I is in the So state), the system enters the R1 state. If the failure is severe enough to cause

a system coldload, a system failure occurs; otherwise, the system attempts to recover

from the failure by using backups. If recovery is successful, the system enters the Si

state; otherwise, a double processor halt occurs. If the two halted processors control

key system resources (such as a set of disks) that are essential for system operation, the

3 rest of the processors in the system also halt and a system failure occurs; otherwise, the

system enters the S2 state and continues to operate. The value of r, the transition rate

I
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Figure 6.1 Software Reliability Model

out of an R•, is small and has virtually no impact on software reliability; a value of one

transition per minute was used in the analysis. Since the system stays in an Ri state i
for a short time, additional failures occurring in an R• state were ignored; in fact, theseI

failures are implied in the failure rate (A) in the corresponding S, and Sj+1 states. Given
the model in Figure 6.1, software reliability of the system can be estimated by calculating

the distribution of time for the system to be absorbed to the Sdm,, state, starting from

the So state.

In Figure 6.1, the three coverage parameters Cd, C~d, and Coo were calculated from

Table 6.1: 3
Cd = Prob.(double CPU haltlsoftware failure) = AlC41 + AC,. + A,\ (61)

AICd Cd + A,Cr .r + A,% 'd (6.1iI

Cad = Prob.(system failureldouble CPU halt) = A C f1 Ci + A7 C4 , dr, + A.Cd.C,,, (6.2)5,C6 + c + '
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and

C 8. = Prob.(system failure due to severe, single CPU halts) = A/C,/+ A,.,,, + A,, C,,

(6.3)

The parameter Cd includes the two cases explained in Section 4.1: the failure of a

process pair caused by a single software fault, and the failure of a process pair caused

by two software faults (the second halt occurs during job takeover). The parameter C~d

represents the probability that the system loses a set of disks as a result of a double

processor halt. The parameter C,d is determined primarily by the system configuration

and is discussed further in Section 6.4. The above three parameters can actually be

obtained directly from Table 4.4 in Subsection 4.1.5. Equations (6.1), (5.2) and (6.3) will

be used to investigate the impact of recurrences (),,) on software reliability in Section 6.2.

The model (Figure 6.1) includes the effect of multiple independent software failures.

For exarnple, if a software failure occurs when the system is in the Si state (i # 0), the

following three system failure scenarios must be considered: the system fails regardless

of whether the new failure causes a single or double processor halt, because the first

processor halted because of the new failure causes a set of disks to become inaccessible;

the system fails because the new failure is severe and can only be recovered by a system

coldload; and the new software failure causes a double processor halt, and the second

processor halted causes a set of disks to become inaccessible. This situation is shown in

* Figure 6.2.

It was not possible to estimate the branching probabilities in Figure 6.2 for each state

i frorm the data, because the major failure mode (i.e., a software failure occurring when

the system is in the So state causes a double processor halt and subsequently causes a

system failure) was dominant. To estimate these parameters, the following assumption
* was made.

Assumption 2: The probability that any two processors in the system control a

set of disks that is essential for system operation is equal to the parameter C'd,

measured using failures from all user systems.
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The new failure is severe and can only Yes ( System Failure

be recovered by a system coldload? 
S

1 NoQThe new software failure causes No System in State S.
a double CPU halt? I

The additional second CPU halt Systm(i S .at
makes key resource inaccessible? System in State a+2

System Failure

Figure 6.2 Effect of Multiple Independent Software Failures I

Again, this assumption was necessary because Cod for a single system could not be de-

termined from the measured data. A value of C~d measured using failures from all user

systems would be a reasonable estimate. 3
Table 6.2 shows the branching probabilities in Figure 6.2 calculated for each Si (i # 0)

state. For example, given that an additional software failure causes a double processor 3
halt when the system is in the S state, the probability that the third processor halt does

not cause a system failure (path D in Figure 6.2) is (1 - C~d) 2 because the probability I
that the third processor halted and either of the two processors which were already halted

control a set of disks (i.e., cause a system failure) is Csd. The branching probabilities

in Table 6.2 were used to determine the corresponding transition rates in the model

(Figure 6.1).

The same recovery rate was used regardless of the number of processors halted, be-

cause the recovery time is typically determined by the time required to take a memory

dump, and a memory dump is taken from one processor at a time. Previous studies
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Table 6.2 Parameters for Multiple Independent Software Failures

I ; = 1 (i.e., system in S1 ) i = 2 i = 3 i =-4zý

Path A Csd 1-(1-Csd)2  l-(1-Csd) 3  1

Path B (1-Csd)C5 s (1-Csd)2 C.' (1-Csd) 3 Css
Path C (1-Csd)(1-Css)" (1-Csd) 2 (1-C 8 s)• (1-Cd)3 (1-C.s)•

(1 -Cd) (1 -Cd) (1 -Cd)
Path D (1-Csd)(1-C.s)" (1-Csd)2(1-C..)• -

Cd(1- Cd)2  Cd(1 - Csd) 3

Path E (1-Csd)(1-CS.)- (1-Csd)2(1-Cs)• (1-Csd)3(1-Css)Cd

I Cd(1-(1-Cd CdO(-(1-Cd) 3 )

I assumed that the failure rate is proportional to the number of processors up and working

[50]. The same software failure rate was assumed in all states, considering that, as more

I processors halt, the rest of the processors will receive more stress. Again, the dominance

of the major system failure mode did not allow us to estimate the parameters from the

data.

The distribution of time for the system to be absorbed to the system failure state,

starting from the normal state, was evaluated using the model in Figure 6.1. SHARPE

[51] was used for the evaluation. Figure 6.3 shows the software reliability curve of the

modeled system and confirms the assumed software MTBF of 30 years. The figure

* represents the reliability of an overall Tandem system in the field when only the faults

in the system software are considered.I
6.2 Reliability Sensitivity Analysis

Table 6.3 shows six factors considered in the analysis. The second column of the

3 table shows activities related to these factors, and the third column shows the model

parameters affected by the factors. For example, a 10% reduction in the number of

3 faults that cause software failures, which can be achieved by improving the softw're

development process, will reduce A by 10% by reducing Af, A, and A, simultaneously.

I (Note that the number of faults identified can be regarded as the software failure rate
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Figure 6.3 System Reliability Due to Software I
when only a single copy of the software runs.) On the other hand, a 10% reduction in the

recurrence rate (A,), which can be achieved by improving the software service process, 3
will reduce A by 6.1% (Table 6.1) and change Cd, Cod, and C,, accordingly. Refer to

Equations (6.1), (6.2) and (6.3). 3
Table 6.3 Factors of Software Reliability 3
Fco 1 Related Parameters

Factor Activity Detailed Overall
Number of fault, Software development A1 , A,, A, A
Recurrence rate Software service A, A, Cd, Csd
Coverage parameter Cd Robustness of process pairs Cal , Cd,., Cd. Cd

Coverage parameter Csd System configuration Csdfi Csdr,, Csdu Cd
Coverage parameter CUs Css1, C ,ssr Casu CIS
Recovery time Diagnosability/maintainability p p 3

The coverage parameters Cd and Csd are determined primarily by the robustness of I
process pairs and the system configuration, respectively. For example, Cd can be reduced

by conducting extra testing of the routines related to job takeover. The parameter Cod is I
determined by the location of failed process pairs and the disk subsystem configuration.

This parameter is discussed further in Section 6.4. Analytical models for predicting
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coverage in a fault-tolerant system and the sensitivity of system reliability/availability

3 to the coverage parameter were discussed in [52]. The recovery rate y can be improved

by automating the data collection and reintegration process.

3 Figure 6.4 shows the software MTBF evaluated using the model in Figure 6.1 while

varying the six factors in Table 6.3, one at a time Tt is interesting to see that Cd and Cd

3are almost as important as A in determining . ... are MTBF. For example, a 20%

reduction in Cd or Cod has as much impact on software MTBF as an 18% reduction in A.

5 (The figure shows that the impact is approximately a 20% increase in software MTBF.)

This result is understandable because the system fails primarily because of a double

I processor halt causing a set of disks to become inaccessible, not because of multiple

independent software failures.

MTBFntW 2-

MTBFc.,re1t L-8 X

1.6

I 11.2-_X
1 - It •Factor,,,

SI I I IFactorcurrent

0.5 0.6 0.7 0.8 0.9 1 1.1

3 Figure 6.4 Software MTBF Sensitivity

3 Figure 6.4 also shows that the recurrence rate has a significant impact on software

reliability. A complete elimination of recurrences (A, = 0 in Table 6.1) would increase the

31 software MTBF by a factor of three. The impact of C., on software reliability is small,

because severe, single processor halts causing system coldloads are rare. The impact of

3q on software MTBF is virtually nil. In other words, recovery rate is not a factor as far
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as software reliability is concerned, again, because the system is unlikely to fail because I
of multiple independent software failures.

Typically, it is assumed that the number of faults in software is the only major factor

determining software reliability. Figure 6.4 clearly shows that in the Tandem system, 3
there are four degrees of freedom in improving the software reliability: the number of

faults in software, the recurrence rate, the robustness of process pairs, and the system 3
configuration strategy. The first two are general factors, and the last two are platform-

dependent factors. Efforts to improve software reliability can be optimized by estimating 3
the cost of improving each of the four factors. I
6.3 Reliability Sensitivity to Fault Category

This section investigates the impact of software faults in different fautt categories

(Table 3.2 in Section 3.1) on software reliability. In this section, a failure group is defined I
as the group of software failures caused by all faults that belong to a fault category.

We estimated the software MTBF by assuming that each failure group is empty, i.e.,

the faults in a fault category did not cause software failures. The failure rate and the

coverage parameters for the model in Figure 6.1 were adjusted:

An = total no. of software failures - no. of software failures in a failure group A , (6.4) I
total no. of software failures I

total no. of double CPU halts - no. of double CPU halts in a failure group
Cd = total no. of software failures - no. of software failures in a failure group (6.5) 3

- total no. of system failures - no. of system failures in a failure group - (6.6)
sd - total no. of double CPU halts - no. of double CPU halts in a failure group

and

total no. of severe, single CPU halts-no. of severe, single CPU halts in a failure group I
total no. of software failures- no. of software failures in a failure group

(6.7) 3
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In Equation (6.6), only those system failures caused by double processor halts (i.e.,

3 failures of process pairs) were counted.

Table 6.4 shows the results. The last column of the table shows the improvement

3 in software MTBF when failures caused by each fault category are eliminated. Only

those categories that have more than ten failures were considered. The table shows that

3 "Missing operation" caused the greatest reliability loss. Further analysis showed that

uninitialized pointers (Table 3.2 in Section 3.1) were responsible for more than half of

i this loss. The table also shows that "Unexpected situation" is another significant source of

reliability loss. Most of this loss is attributed to faults such as incorrect parameters passed

by user processes, illegal procedure calls made by user processes, and not considering

all legitimate operational scenarios in designing software. (The reliability loss is not

attributed to subtle faults such as race conditions and timing problems.) Additional

i code inspection and testing efforts can be directed to these fault categories. Unidentified

failures had virtually no impact on software reliability, because all of these failures caused

i single processor halts.

Table 6.4 Reliability Sensitivity to Fault Category

Fault Category #Failures M_'___,,_oeIMTBF,.•r ....

Incorrect computation 3 -
Data fault 21 1.00
Data definition fault 7 -
Missing operation 27 1.47
Side effect of code update 5 -
Unexpected situation 46 1.353 Microcode defect 8 -

Other 12 1.06
Unidentified 26 1.00
Unable to classify 24 1.12

6
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6.4 Impact of System Configuration on Software

Dependability U
System configuration is an issue that demonstrates the importance of considering the

interactions between hardware, software, and operations. Table 6.5 shows a breakdown I
of the process pairs whose failures caused the 18 observed system failures, based on their

configurability. In the table, a "Location-free" process pair refers to a pair that can be

placed on any two processors in the system, independent of hardware configuration. The

location of a nondisk or disk I/O process pair is determined by hardware configuration.

The fai'ure of a nondisk I/O or location-free process pair causes a system failure, because I
the process pair executes on the two processors that execute a disk process pair. Thus,

a double processor halt resulting from a failure of such a nondisk I/O or location-free 3
process pair would cause a set of disks to become inaccessible. Table 6.5 shows that

the number of system failures could potentially be reduced by 67% (12 out of 18) by 3
avoidance of the overlap In location between disk process pairs and the failed nondisk

or location-free process pairs. This result demonstrates the importance of considering 3
software dependability in the context of an overall system.

Table 6.5 Configurability of Failed Process Pairs That Caused System Failures U
Failed Process Pair #System Failures 3

Location-free process pair 7
Non-disk I/O 5
Disk I/O process pair 2
Others 4

I
6.5 Summary

This chapter seeks to identify factors determining the dependability of operational

software. We built a software reliability model that describes I pact of software faults 3
on an overall Tandem system in the field and conducted rei, lity sensitivity analysis
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using the model. The results showed that, in addition to the conventional approach of

3 reducing the number of faults in software, software dependability in Tandem systems can

be enhanced by reducing the recurrence rate and by improving the robustness of process

3 pairs and the system configuration. The number of faults in software and the recurrence

rate are general factors; the robustness of process pairs and the system configuration

3 are platform-dependent factors. Improvement efforts can be optimized by estimating the

cost of improving each factor.

3 The results also showed that the impact of software fault tolerance (i.e., the robustness

of process pairs) and the impact of system configuration are as significant as is the impact

of the number of faults in software. A complete elimination of recurrences would triple

the software MTBF. The analysis of reliability sensitivity to fault category showed that

faults such as "Missing operation" and "Unexpected situation" are the major causes of

software reliability loss. Additional code inspection and testing efforts can be directed to

these types of faults. The investigation of the impact of system configuration on software

3 dependability demonstrated the importance of considering interactions between software

and hardware in the context of an overall system.

I
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Chapter 7 1
I

Diagnosis of Recurrences

I
After all analyses of software dependability, one issue stands out. This issue is recur-

rence. This chapter presents a system-independent approach for automatically diagnosing 3
recurrences based on their symptoms [53]. Characteristics of recurrences are analyzed

first: their causes, effects, and symptoms are investigated. Based on the results of this 3
analysis, an approach for automatically diagnosing recurrences based on symptoms is

developed: a diagnosis environment is discussed, a diagnosis strategy (i.e., a set of symp- -
toms and an associated matching scheme for diagnosing recurrences) is proposed, and a

method for evaluating the effectiveness of a diagnosis strategy is presented. The effec- I
tiveness of the proposed diagnosis strategy is evaluated using actual failure and repair

data collected from two Tandem system software products. Recurrences exist at all levels

of software problems. This chapter focuses on processor failures caused by faults in the

system software.

I
7.1 Analysis of Recurrences I

The results in Chapter 3 show that 72% of reported field software failures in Tandem

systems are recurrences. Recurrences are not unique to Tandem systems. A similar 3
situation exists in IBM systems [54] and AT&T systems [55]. Clearly, in environments

where many users run the same software, the number of faults in software is not the only 3
factor determining software dependability. Recurrences can seriously degrade software

dependability in the field. 3
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Recurrences exist for several reasons. First, designing and testing a fix of a problem

can take a significant amount of time. In the meantime, recurrences can occur at the

same site or at other sites. Second, the installation of a fix sometimes requires a planned

3 outage, which may force users to postpone the installation and thus cause recurrences.

Third, a purported fix can fail. Finally and probably most importantly, users who did

3 not experience problems due to a certain fault often hesitate to install an available fix

for fear that doing so will cause new problems.

I The effects of recurrences are: more failures than predicted based on the number of

faults; wasted resources due to repeated data collection, reporting, and diagnosis of the

same problem; and delayed service to users even if solutions to problems are available. An

attempt was made to determine an optimal preventive service policy to address the first

effect [54]. Preventive service is the process of fixing a software fault in a user system,
even though the fault has not caused a problem in the system. Preventive service has the

potential to reduce the number of recurrences, but it costs resources. Further, faults in a

3 fix can cause new problems in user systems. Based on the failure and shipment data of

IBM software products, the study proposed that preventive service be limited to a small3 number of highly visible faults. This result and the described reasons for recurrences

indicate that recurrences will continue to be a significant part of field software failures.I
7.1.1 Distributions of recurrences

I Figure 7.1 shows the cumulative number of software failures reported during the mea-

surement period for first occurrences, recurrences, unidentified failures, and all failures.

For each type of failure, the hypothesis that the distribution is uniformly distributed

3 could not be rejected by the Kolmogorov-Smirnov test at the 1% significance level. (The

Kolmogorov-Smirnov test is commonly used to test the goodness of fit because it directly

3 compares a raw distribution to a hypothesized distribution [381.) This result is reason-

able, because the data was collected from all user systems where events such as software

3 upgrade and the installation of fixes of known faults occur asynchronously. As a result,

the aggregate distribution is expected to be close to a uniform distribution regardless of
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the type of the failure distribution in each site. This uniform occurrence of failures is a I
desirable characteristic from a system service point of view. 3
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Figure 7.1 Cumulative Number of Software Failures by Failure Type

A first occurrence and a set of recurrences caused by the same software fault are I
referred to as a recurrence group. The 153 TPRs whose underlying software faults were

identified formed 100 recurrence groups, which was expected, because there were 100

unique faults in Table 3.2. Typically, a TPR reporting a recurrence has pointers to the 3
TPRs reporting. the corresponding first occurrence and other recurrences. We searched

the TPR database for all past TPRs sharing the same causes with the 100 recurrence I
groups using these pointers and expanded the size of the recurrence groups. After this

expansion, 69 recurrence groups had more than one TPR. 3
Failures in each recurrence group were ordered in time, and the time between each

two adjacent failures was measured. Figure 7.2 shows both the raw and fitted cumulative 3
density functions for the time between recurrences, obtained using all instances from the

69 recurrence groups. The distribution is well represented by a two-phase hyperexpo- 3
nential distribution. The hypothesis that the distribution fits a simple exponential was

rejected by the Kolmogorov-Smirnov test at the 5% significance level. But the hypothesis 3
68 1
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that the distribution fits a two-phase hyperexponential function could not be not rejected

using the same test at the same level.
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. Figure 7.2 Cumulative Distribution of Time between Recurrences

Error-burst phenomena in a computer system have been reported by previous studies

[42]. Our results show that a similar phenomenon exists in a much larger environment,

i.e., when we look at operating system failures from a large number of user systems. In

Figure 7.2, the recurrence-burst phenomenon is captured by the higher recurrence rate

(A2-the average time between recurrences is l/A2 ; 40 days) with a weight of 0.51.

The lower rate (Ai-the average time between recurrences is 1/A1 ; 275 days), with a

weight of 0.49, captures the time between failure bursts in a recurrence group. Isolated

recurrences were primarily because of installing a software version that contains a known

fault that is almost forgotten and because of known faults that rarely expose themselves.

3 A site can carry known faults that rarely expose themselves, because they are not likely

to cause failures.

3 There were recurrence groups in which a burst of recurrences followed long after

the first occurrence. This fault reappearance was primarily because of side effects of

3 software maintenance (i.e., a code update causing a fixed fault to reappear). The data

also showed that, although they are statistically insignificant, there are quick recurrences
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within a couple of days. Considering that quick recurrences in a site are typically reported I
as a single TPR, this quick recurrence could be a significant recurrence mode in actual

environments. These recurrence modes indicate that recurrences can be reduced by

providing quick service for a new fault, by ensuring that known and fixed faults are not 3
reintroduced in the code or in user systems, and by better judging the set of sites that

are vulnerable to a known fault. 3
7.1.2 Symptoms of recurrences 3

Failures in a recurrence group share the same underlying software fault, but their

symptoms can differ. The investigation of error propagation in failures caused by the I
same software fault indicated that they often had identical stack traces, which suggested

that an automatic diagnosis of recurrences based on symptoms may be possible. A stack

trace is the history of procedure calls made by the process that was running at the time

of the software failure.

Figure 7.3 shows a stack trace extracted from a failure. Each line represents a pro- 3
cedure, and the associated number represents the offset of the code location (i.e., the

machine instruction) that called the next procedure from the beginning of the procedure, 3
in octal words. In Figure 7.3, the system process that asserted the processor halt is

normally sitting in the procedure MAINLOOP. When the process receives a request, it I
serves the request by calling the necessary procedures. In this case, the process detected

a nonrecoverable error during the execution and halted the processor on which it was 3
running. The set of procedures shown in Figure 7.3 constitutes a stack trace for the

failure. Each software failure has its stack trace.

The first line from the top shows an error-handling procedure. There is an error-

handling procedure and an associated halt code for each type of problem detection defined

by software developers and system designers. In the sample shown in Figure 7.3, the 3
error-handling procedure shows that a page fault occurred during the execution of a code

section where a page fault is not supposed to occur. The actual stack trace consists

of the procedure names beginning with the second line. The stack trace represents the
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Halt code -+ %00104 into PAGEFAULT
TOS -. %00365 into GET-ACCTENTRY

%00220 into GET-FILEOPJNPUTBUF
%00052 into READ.SETUP
%00015 into READRRQST
%00446 into MAINLOOP

Figure 7.3 A Stack Trace with Offsets

software function that detected the problem, i.e., what the processor was doing at the

time of failure. The stack trace is not necessarily related to the location of the underlying

I software fault.

To determine the significance of the observation that failures caused by the same

software fault often have identical stack traces and to understand why failures caused

by the same software fault have different stack traces, we compared the stack traces of

failures in each recurrence group [34]. The first two columns of Table 7.1 show the results

3 of matching the stack traces of failures in each recurrence group. The last two columns

of the table show a further breakdown of each group based on the propagation modes

3 discussed in Subsection 3.2.2. (Error latency was not considered here.) The table shows

that in 70% of the recurrence groups (44 out of 63), all failures in a recurrence group

3 have identical stack traces.

The third and fourth columns of Table 7.1 show that error propagation (i.e., "Further

5 corruption") is a major reason that failures caused by the same software fault have

different stack traces. Once many errors are generated because of error propagation,

3 there can be many possible detection scenarios, and each of these can give a distinct

stack trace. A further investigation showed that faulty functions in an operating system

3 that can be called by many processes are a major reason that "Quick detection" and "No

propagation" lead to different stack traces in a recurrence group. Table 7.1 also shows

that "No propagation," which is significant because of the use of defensive programming

techniques, helps increase the proportion of recurrence groups that have identical stack

traces.
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Table 7.1 Comparison of Stack Traces in Recurrence Groups i

Results of Comparison # Recurrence Propagation Mode # Recurrence I
Groups Groups

Identical 44 No propagation 19
Quick detection 19
Further corruption 3
Unable to classify 3

Different 19 No propagation 1
Quick detection 6
Further corruption 11 3

__ _ _ _ _ _ _ _ _ _U nable to clas sify 1i

Unable to classify 6 U

The above results indicate that an automatic diagnosis of recurrences based on symp- -
toms may be possible. The following sections develop a system-independent approach

for automatically diagnosing recurrences based on their symptoms. 3

7.2 Failure Diagnosis I
We are looking at environments where many users run the same software, such as 3

an operating system. Figure 7.4 shows a simplified picture of software development

and service. Once software is developed and released to the field, many users run the

software and report problems. There are usually several lines of service. Problems are

diagnosed, fixes are made, and interim versions of software are released to the field. This

process, represented by a loop at the lower right half of Figure 7.4, is called software

service. Currently, problem diagnosis is performed manually. As a result, it can take a

month before a problem report reaches the analyst who can diagnose the problem. In

the meantime, a great deal of human effort can be wasted.

Failure diagnosis requires experience, a detailed knowledge of the system, and ex- -
tensive reasoning. Figure 7.5 shows a simplified picture of failure diagnosis. A memory

dump captures the processor state at the time of a failure. Given a failure report and an 3
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, New
Design/ Requirements Design Implementation Verification Users
Feature

1 Problem

3 Design of Fix * Diagnosis

I Figure 7.4 Software Development and Service

3 associated memory dump, analysts investigate key failure symptoms, such as the sofL-

ware function being executed, the apparent reason for the halt, and the error patter',.

3 Based on these symptoms, they attempt to identify the underlying fault by reasoning

back through the error generation and propagation processes. Software failh re diagnosis

3 is a complex task that is difficult to automate. Here we ask a simpler question: can we

automate the diagnosis of recurrences? This question is significant, because the majority

3 of field software failures are recurrences.

I Key Symptoms:
Memory - Reason for Halt Error Generation Underlying

3 Dump - Active Software Function and Propagation Fault

- Error PatternI
Figure 7.5 Software Failure DiagnosisI

The results in the previous section showed that failures caused by the same software

3 fault often share common symptoms, such as stack traces. This observation is not wholly

new. Analysts have long used this knowledge as an aid for identifying recurrences, but

3 they have done so manually. As a result, this knowledge has not been fully utilized. We

focused on the feasibility of automating the diagnosis of recurrences based on symptoms,

I
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which naturally leads to the que. tions: what are the common symptoms; how to compare

symptoms; and how effective will the diagnosis be. The following sections address these

questions.

U
7.3 Diagnosis Strategy

A diagnosis strategy consists of a set of common symptoms and an associated match-

ing scheme used for identifying recurrences. The diagnosis strategy is determined once 3
by off-line evaluation. A diagnosis tool can be developed based on the selected diagnosis

strategy. 3

7.3.1 Common symptoms I
The first question is: which symptoms are usually shared by the failures caused by 3

the same fault? Our analysis shows that failures caused by the same fault often share

two types of symptoms: certain local and shared data (data-oriented symptoms), and 3
characteristics of the code being executed at the time of failure (code-oriented symptoms).

Examples of code-oriented symptoms are stack traces (Figure 7.3 in Subsection 7.1.2) 3
and code locations where problems were detected (also called problem detection locations

or simply detection locations). In Figure 7.3, the first procedure from the top, except for 3
the error-handling procedure, is called the procedure at the top of the stack (TOS). The

procedure at the TOS and the associated offset (e.g., "%00365 into GET-ACCTENTRY" I
in Figure 7.3), when combined with the software version information, uniquely identifies

the problem detection location. The software version must be known, because the proce-

dure offset may change: there are many versions of the same software in the field because

of bugfixes and functional enhancements. This issue is discussed further in Section 7.6.

Examples of data-oriented symptoms are the values of parameters passed between pro- 3
cedures captured in a stack trace and the state of certain local and global variables.

Two extremes exist: a software fault can cause failures with different symptoms, and 3
two software faults can cause failures with identical symptoms. Figure 7.6 illustrates the
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first extreme: two failures caused by the same software fault have different stack traces.

3 In the figure, a circle represents a procedure call, and an arrow represents the execution

within a procedure. Figure 7.6 shows a failure in which the base procedure MAINLOOP

3 called the procedure NEXTREQ, which in turn called the procedure MONITORPRI-

MARY, MONITORPRIMARY called the procedure TK-PROCESSTKCKPT, in which

3 a fault was exercised and a processor halt was asserted. In another failure, the same se-

quence was repeated, except that MAINLOOP reached MONITORPRIMARY through

I the procedure INITIALIZE. This calling path is also shown in the figure. Each chain of

procedure calls forms a stack trace and is represented by a set of connected solid arrows

in the figure. The dotted arrows represent a pair of procedure call and return that does

not explicitly appear in a stack trace. Because the software structure is modular, there

can be different program paths that reach the faulty code section. Figure 7.6 shows two

3 such paths. Each of the paths gives a distinct stack trace.

TK&PROCESSTKCKPT

3 ~MONITORPRIMARY
Fault Failure

Exercise
NEXTREQ. •

I

MAINLOOP

NO Figure 7.6 Detection near Faulty Code

3 Figure 7.7 shows another example of the first extreme. The figure shows a case in

which a wide range of corruption occurred in shared data. The dotted lines represent

I accesses to the corrupt shared data. The underlying fault was a developer's misuse of a

data structure. Once corruption of shared data occurs, any software function can detect

some of the errors and assert a processor halt, which would lead to widely different stack

7
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Failure Failure
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Figure 7.7 Detection after Corruption in Shared Data

traces, problem detection locations, and error patterns. Figure 7.7 shows two failures

caused by the same software fault that have very different stack traces. 3
The second extreme to consider is that different faults can cause failures with identical

symptoms. There are usually multiple consistency checks in a procedure, and each of the U
checks tests a different condition. As a result, problems caused by different software faults

can be detected within the same procedure, and thus different software faults can cause

failures with identical stack traces. In one case, a processor halt was asserted during the

execution of the procedure DC.LV4-PROTOCOL, which was called by the base procedure

DCTS. The underlying software fault was not providing a routine to handle a rare but 3
legitimate sequence of events, which led to an inconsistent system state. This failure

scenario and the left-hand-side stack trace in Figure 7.7 give an example of the second 3
extreme. I
7.3.2 Matching

Once a set of common symptoms is determined, the next question is: how do we U
compare failure symptoms (i.e., particular values of the common symptoms that were

chosen to be used for the diagnosis)? Three types of matching can be considered: complete

matching, partial matching, and weighted matching. In complete matching, two failures 3
are declared to be caused by the same fault if their failure symptoms (e.g., two stack

7
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traces extracted from the two failures) are identical. In partial matching, two failures are

declared to be caused by the same fault if their failure symptoms are within a certain

distance of each other, based on a predefined measure of distance. Partial matching

allows us to make a certain trade-off under the two extremes discussed in Subsection 7.3.1.

Partial matching is discussed further in Section 7.5 and Section 7.6.

3 Weighted matching is necessary when several types of common symptoms are used.

In weighted matching, a measure of the similarity of two failures is determined by com-

I paring their values for each common symptom. These measures are then combined to

form an overall measure that represents the similarity of two failures in their symptoms,

based on the weight of each measure. The weights for different common symptoms can

be determined by an iterative performance evaluation and based on the knowledge of

software structure and functionality.

7.3.3 -Proposed diagnosis strategy

3 We proposed the comparison of stack traces and problem detection locations as a

strategy for identifying recurrences. Both complete and partial matching can be used

for comparing stack traces. Since a detection location is a single piece of information,

only complete matching can be used for matching detection locations. We focused on
the use of code-oriented symptoms, because we used software failure reports (i.e., TPRs)

generated by analysts, not actual dumps, in evaluating the effectiveness of the proposed

diagnosis strategy. Full data-oriented symptoms exist in memory dumps, but they were

i not consistently recorded in the failure reports.

3 7.4 Diagnosis Environment

3 Figure 7.8 illustrates the type of automatic diagnosis environment envisioned. The

diagnosis tool is connected with many user systems by an on-line alarm system. All

3 previously reported failure symptoms and associated information, such as underlying

faults and fixes, are stored in a database. On a failure alarm, the tool accesses the
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system that sent the alarm, extracts the values of the common symptoms (e.g., a stack N
trace and a detection location), and compares them with those of previously reported

faults in the database. If a match is found in the database, the new failure is declared

a recurrence of the corresponding fault; otherwise, it is declared a first occurrence. In 3
the case of recurrence, the tool also identifies an available fix. After the diagnosis, the

database is updated with new failure data. The environment shown in Figure 7.8 involves 3
connections with many user systems and a database, as well as cooperation with other

software service tools1. 3
Fault History Database 3

-Fault& Fix
Failure • Failure Symptom - Failure Symptom

- Software Version with Fix
Match
Found? A.

I I

No Yes

Database Update

First R
Occurrence Recurrence

Figure 7.8 Diagnosis Environment Envisioned 3

7.4.1 Cost of misdiagnosis

A question here is: what is the cost of a misdiagnosis in an automated diagnosis 3
environment? Suppose that two software faults (faults A and B)-cause failures with

identical symptoms. Let's assume that fault A causes a failure first. When fault A causes I
a failure for the first time, the failure will be diagnosed and fixed by analysts, because it

is the first occurrence of fault A. When fault B causes a failure later at another site, an I
'Such a fully integrated diagnosis environment is currently being built at Tandem Computers Incor-

porated.
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automatic diagnosis tool will treat the failure as a recurrence of fault A and recommend

the installation of a fix of fault A. Effectively, an incorrect fix is installed. The situation

can be repeated wher fault B causes failures at other sites. This problem can be resolved

when fault B causes a failure at a site that is supposed to have a fix for the fault (i.e.,

a site that has installed a fix for fault A). Then the tool will realize the problem and

draw human attention. To handle this situation, the failure database has to contain

infoimation about the software version that contains a fix for each fault in the database,

as shown in Figure 7.8.

Thus, the cost of a misdiagnosis is the time between the initial incorrect diagnosis

and the eventual correct diagnosis. Meanwhile, multiple failures can occur as a result

of a single misdiagnosis. Considering the implementation of a diagnosis strategy as an

automatic tool, more emphasis can be given to reducing the probability of misdiagno-

sis than to increasing the probability of successful diagnosis. We can also consider a

semiautcmated diagnosis environment in which a diagnosis tool provides the results of

comparing failure symptoms and human analysts make the final decision for each case.

I 7.5 Evaluation Method

3 The effectiveness of a diagnosis strategy must be evaluated using actual data. This

section discusses and applies a method for such evaluation. Note that this type of eval-

3 uation is performed only once as a means of determining the diagnosis strategy.

To evaluate the effectiveness of a diagnosis strategy under the two extremes described

I in Subsection 7.3.1, we considered fault clusters and symptom clu.-!crs. A fault cluster

consists of all failures caused by a software fault. Fault clusters are formed based on

diagnosis and repair logs by analysts. Given a set of failures for which the underlying

software faults were identified, fault clusters can be uniquely determined. The set of fault

clusters is the reference ,iata. A symptom cluster consists of all failures sharing common

3 symptoms. As far as the diagnosis is concerned, failures within the same symptom clus-

ter are regarded as manifestations of the same software fault. Each choice of common

I
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symptoms and an associated matching scheme (i.e., each diagnosis strategy) may give a

new set of symptom clusters. With these definitions, in the automated diagnosis environ- -
ment shown in Figure 7.8, the terms matching and clustering can be used interchangeably.

That is, "found a matching symptom in the database" and "clustered with a symptom 3
in the database" have the same meaning.

A one-to-one correspondence between fault clusters and symptom clusters would be 3
ideal, but that correspondence is difficult to achieve. We considered two general situations

to describe the imperfection of a diagnosis strategy: join and split (Figure 7.9). A join 3
refers to a situation in which failures caused by different software faults are grouped into

a single symptom cluster. A split refers to a situation in which failures caused by a single

software fault are divided into multiple symptom clusters.

(a) Join (b) Split

-- ,,Symptom Cluster M
I I

Fault A

Fault C - U
" Symptom Cluster N

Fault B Symptom Cluster L 0-% %

Symptom Cluster 0 3
Figure 7.9 Join and Split I

Figure 7.10 illustrates a join and a split when the complete matching of stack traces

is used. In the first group of failures caused by fault A, the underlying fault was not 3
providing a routine to handle a legitimate operational scenario when designing the soft-

ware. When fault A was exercised, a pointer in a data structure acquired an invalid 3
address, because it was not updated (i.e., the data structure became inconsistent). The

problem was detected by a consistency check on the first access of the data structure 3
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1 in all four failures. This situation was a typical example of no propagation discussed in

Subsection 3.2.2. All failures caused by fault A had identical stack traces.

SLOTS -- VALIDATE_CONTROLBLOCK -' INTEGRITYFAULT

3Fault A SlOTS -~ VALIDATE..CONTROL-BLOCK -~ INTGRITY.FAUJLT JOIN
(inconsistent SLOTS - VALIDATECONTROLBLOCK - INfTEGRITYJFAULT

data structure) SLOTS - VALIDATE.CONTROLBLOCK -' INTEGRITYFAULT

I / SIOTS -i VALIDATECONTROLBLOCK -W INTEGRITYFAULT

S~SIOTS -' LV4_.PROTrOCOL - RETURNOCBSPACE -- pUrTPOOL

SSOTS - LV4_PROTOCOL - RETURNOCBSPACE - PUTPOOL

Fault B SILOTS - LV4_PROTOCOL - RETURNOCBSPACE - PUTPOOL

(further SPLIT
corruption) SIOTS -. LV6_OPEN -_ IOPROCOPEN -_ ALLOCOCB - PUTPOOL

SLOTS -- LV6..OPEN -" IOPROCOPEN -• ALLOCOCB -• PUTPOOLI
SLOTS -- LV4_PROTOCOL -• RETURNPOOL -- PUTFOOL -' INSTRUCTIONFAIL

3 Figure 7.10 Examples of Join and Split

3 In the second group of failures caused by fault B in Figure 7.10, the underlying

fault was a misuse of a data structure, which resulted in a wide range of corruption of

3 shared data. This situation was a typical example of further corruption discussed in

Subsection 3.2.2. Depending on which of the generated errors are detected first, the

I failures caused by fault B can have very different stack traces. The figure shows four

distinct stack traces.

The data structure affected when fault A was exercised was a part the memory area

that was corrupted when fault B was exercised. As a result, one of the seven failures

caused by fault B and the failures caused by fault A had identical stack traces, which is

3 a join. The effect of a join is the potential for misdiagnosis. An automatic diagnosis tool

may not be able to distinguish the faults that cause a join. Two situations are possible.

3 First, a failure caused by a new fault can be declared a recurrence of a previously reported

fault. Second, a recurrence of a fault can be declared a recurrence of another fault.
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The failures caused by fault B in Figure 7.10 form four symptom clusters, which is a I
split. The effect of a split is the potential for repeated diagnoses of the same fault. Even

with an automatic diagnosis tool, fault B has to be diagnosed four times by analysts.

The current manual diagnosis strategy would require that fault B be diagnosed seven 3
times by analysts. A perfect, automatic diagnosis tool would require that fault B be

diagnosed only once by analysts. 3
Suppose that using a particular diagnosis strategy leads to N joins and M splits.

Also, let J, denote the number of faults involved in the i-th join, and let Sj denote the 3
number of symptom clusters involved in the j-th split. Then, the following measures of

effectiveness can be defined: 1

Ff ault-misdiagnosed,max - Maximum number of faults misdiagnosed 3
N

= (J 1), (7.1) q

Frepeated-diagnosis,max =- Maximum number of repeated diagnoses 3
M

= "(S,- 1), (7.2)i=1

Scorrect-diagnosis,min = Minimum number of recurrences diagnosed correctly

= Total number of recurrences - Frepeated-diagnosis,max • (7.3)

The actual number of faults misdiagnosed can be smaller than Ffault.miadiagnosed,max for 1
the following reasons:

"* Overlaps of joins: for example, two software faults can generate two symptom 3
clusters as a result of two joins and two splits, as shown in Figure 7.11. In this

case, the actual number of faults misdiagnosed is usually one, not two, as calculated

from Equation (7.1).

"* Nonoverlap of fault manifestation windows: multiple software faults cause failures 3
with identical symptoms in disjoint time windows. Figure 7.12 illustrates a case
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involving two faults, in which one fault causes a failure after the other is completely

fixed in the field. This nonoverlap usually happens when the second fault, which

has been dormant, becomes active after a code update. In the actual evaluation

performed in the next section, if two fault manifestation windows are more than

six months apart, it is assumed that the join does not cause a misdiagnosis.

i The measures Frepeated-diagnosis,max and Scorrect-diagnosis,min provide a maximum and a

minimum number, respectively, because there can be overlaps in splits. For example, sup-

pose that the actual sequence of failure occurrences over time in Figure 7.11 is {p, s, q, r }

and that there is enough time for diagnosis between any two consecutive failures. Then

the actual number of repeated diagnoses in this case can be one, not two, as calculated

from Equation (7.2), because the diagnosis tool can take advantage of information that

faults A and B can cause failures with identical symptoms after the occurrence of failure

3 q. When failure r occurs, the tool can recommend the installation of fixes for both faults.

PI __ __ __ _

Fault A

', q ,

Symptom Cluster M

r
>< %I

Fault B I I
II

I Symptom Cluster N

3 Figure 7.11 Overlap of Joins and Splits

I
Partial matching uses a less strict rule than complete matching in building symptom

3 clusters and therefore generates fewer symptom clusters. As a result, when compared

with complete matching, partial matching leads to a greater or equal number of joins
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Failures Caused by Fault A Failures Caused by Fault B I
with Symptom S with Symptom S

----

Time

Figure 7.12 Nonoverlap of Fault Manifestation Windows

and to a lesser or equal number of splits. Therefore, partial matching can be used to

reduce the probability of repeated diagnosis at the cost of increasing the probability of I
misdiagnosis.

7.6 Evaluation of the Proposed Diagnosis Strategy
Using Field Data

This section evaluates the effectiveness of the proposed diagnosis strategy using the 3
field failure and repair data from two Tandem system software products. The intent of the

evaluation is to investigate the range of effectiveness of the proposed diagnosis strategy 3
and its variations. Ideally, we would have evaluated the strategies using all failures.

Because of time constraints, we used data from two Tandem system software products. I
Given this limit, we selected two products that have widely different reputations among

Tandem analysts in terms of quality, hoping that an evaluation using failures in the two I
products would give us a range of effectiveness.

One product implements the low-level functions to support database applications and

is referred to as DB. The other product implements network communication functions 3
and is referred to as DC. These products run as processes and serve requests from user

applications. Among analysts, DB is known to be robust, while DC is known to be not 3
robust.

We first extracted all user-generated TPRs caused by faults in the two system software 3
products for the past two to three years. We then extracted all preceding TPRs caused

by the same faults. During the measurement period, the products were modified many
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times to fixes software faults and to enhance their features. There was also a major

revision. Both products are written in Transaction Application Language (TAL), which

is similar to C. The size of each product is on the order of 10' lines of commented source

code.

7.6.1 Evaluation using failures in DB

Table 7.2 shows a breakdown of the 152 software failures caused by faults in DB, based

on how the problems were detected. The numbers inside parentheses further subdivide

a class. The failures were caused by 55 faults. The table shows that about 85% percent

of the problems were detected during the execution of the DB code, and 72% of the

* problems were detected by the consistency checks in DB. The percentages are lower in

DC (64% and 33% respectively in failures caused by faults in DC), which indicates that

the DB software has better error detection and error containment capabilities. This

finding corroborates the reputations of the two products among analysts. Only the 130

3 failures detected during the execution of the DB code were used for the analysis, because

these failures and the failures detected outside DB naturally have different code-oriented

3 symptoms.

3 ITable 7.2 Problem Detection Profile (DB)

Problem Detection Fraction (%)3 Consistency Checks 81
Detection within DB (72)
Detection outside DB (9)

Virtual Memory Protection 14
Detection within DB (13)
Detection outside DB (1)

Hang 5

I
I
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7.6.1(a) Matching stack traces I
Table 7.3 shows the effectiveness of the diagnosis when symptom clusters were built 3

by the complete matching of stack traces. Although the stack trace exists in all fail-

ures, not all TPRs contained stack traces. This omission usually happened when there 3
were many recurrences of a software fault. In TPRs reporting later occurrences, analysts

sometimes left pointers to the TPRs that analyzed earlier occurrences, rather than de-

tailing symptoms. Our experience shows that this omission usually happens when later

occurrences share the same symptoms with earlier occurrences. Out of 130 TPRs, 78

contained stack traces. These failures were caused by 39 unique faults. Note that the I
recurrence rate in the data set became much lower than its actual value. The average

number of procedures in a stack trace (i.e., the average length of a stack trace) was 5.7.

Table 7.3 Complete Matching of Stack Traces (DB)

Comm on Symptom #Joins #Splits Fatt-.midiagnoed,ma,, I Scorrect-diagnoi,

Stack Trace 2 9 2{0} 28
(78 TPRs, 39 faults) 3

{}: nonoverlap of fault manifestation windows I
Table 7.3 shows that, with the complete matching of stack traces, at least 72% (28 I

out of 39) of the recurrences could have been identified correctly. (We think that this

percentage would be higher if all TPRs contained stack traces.) At most, two faults 3
could have been misdiagnosed. In each of the two joins, two software faults affected

the processor state in the same manner, and a table entry was lost when the faults 3
were exercised. The problems were detected during an attempt to locate a nonexisting

entry. The problems were detected at an identical code location during the execution 3
of the same software function. The data showed that, in each join, the two software

faults that caused the joins had nonoverlapping manifestation windows. Therefore, the 3
actual number of faults misdiagnosed was zero, which is shown inside a pair of braces in

Table 7.3. Including the halt code in building symptom clusters had a negligible effect (it 3
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reduced Sco.rect-diagnoi,maz by one), because many failures were detected by consistency

3 checks and all of them had identical halt codes.

Partial matching can reduce the number of splits, but this reduction is accomplished at

3 the cost of increasing the number of joins. We investigated the patterns of stack traces

in the nine splits in Table 7.3. Two major patterns of differences in the splits were:

the stack traces are very different from one another, and the stack traces are the same

except for minor differences in the middle. The first pattern is difficult to resolve with

3 partial matching. The second pattern occurred primarily due to the existence of different

program paths to reach the same errors. As a result, different stack traces causing

these splits often had identical procedures at the TOS. Based on these observations, the

* following heuristics were considered for the partial matching of stack traces:

(1) If two stack traces have the same length and differ from one another by no more

than one procedure, group them into the same symptom cluster. This heuristic is

called differ-by-one. Note that repeated applications of this heuristic can cluster

stack traces that differ by more than one procedure.

(2) Apply the differ-by-one heuristic only if the procedures at the TOS are the same.

1 (3) If one stack trace contains all of the procedures in the other without regard to

their order, group them into the same symptom cluster. This heuristic is called

contain-the-other.

1 (4) Apply the contain-the-other heuristic only if the procedures at the TOS are the

same.

Table 7.4 shows the results of the partial matching of stack traces. The numbers

inside the parentheses indicate the differences from the numbers obtained when complete

matching is used (Table 7.3). The table shows that the procedure at the TOS is a useful3 common symptom. Including it prevented the increase in the number of joins appreciably.

By applying the differ-by-one heuristic only when the procedures at the TOS are identical,

at least 87% (34 out of 39) of the recurrences could have been identified correctly. The

number of joins increased by one, but the actual number of faults misdiagnosed was still
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zero because of the nonoverlap of fault manifestation windows. The contain-the-other I
heuristic was not effective.

Table 7.4 Partial Matching of Stack Traces (DB)

Heuristics #Joins #Splits t I
Differ-by-one (+5) (-4)
Differ-by-one & the same procedure at the TOS (+1) (-4)
Contain-the-other (+8) (0)
Contain-the-other & the same procedure at the TOS (+1) (0) 1

I
7.6.1(b) Matching problem detection locations

The results in Table 7.4 indicated that the problem detection location can be a useful I
common symptom. The information identifying a detection location consists of a proce-

dure name and associated offset (Figure 7.3). However, the offset part of the symptom

(e.g., %00365 in "%00365 into GETACCTENTRY" shown in Figure 7.3) is version sen-

sitive. Note that there are many versions of the same software in the field because of

bugfixes and functional enhancements.

DB developers designed the software such that, when nonrecoverable errors are de-

tected by consistency checks, an ASCII string (called the symptom string) is inserted at

the designated location of the process stack before a processor halt is asserted. Given a

symptom string, analysts can recognize the detection location regardless of the software 3
version. A symptom string consists of three padts that identify, respectively, the source

file name, the procedure name, and the specific software check that detected a problem.

All 110 TPRs reporting failures detected by the DB consistency checks (Table 7.2) con-

tained symptom strings. Therefore, the effectiveness of the diagnosis with the comparison I
of detection locations was evaluated based on the 110 TPRs. These TPRs were caused

by 39 software faults. i
Table 7.5 shows the effectiveness of the diagnosis when symptom clusters were formed

based on symptom strings. Since a symptom string is a single piece of information, only
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complete matching is possible. Table 7.5 shows that at least 94% (67 out of 71) of the

recurrences could have been identified correctly by matching symptom strings. At most,

eight faults could have been misdiagnosed. The data showed that the actual maximum

number of faults misdiagnosed was one because of the nonoverlap of fault manifestation

windows.

I Table'7.5 Matching Detection Locations Using Symptom Strings (DB)

Common Symptom #Joins #Splits Ff1 ault-mizdia nosedmaz Scorrect-diagnosis,min

Symptom string 5 4 8{ 1} 67
(110 TPRs, 39 faults)

{ }: nonoverlap of fault manifestation windows

I
Whether a diagnosis strategy is better than another can be determined by a hypothe-

3 sis test. This issue was treated lightly because we used failures in only two products. The

hypothesis that matching symptom strings and the complete matching of stack traces

were equally effective in terms of successful diagnosis was rejected, which indicates that

matching symptom strings was more effective in terms of successful diagnosis for the

measured period in DB (Table 7.3 and Table 7.5). We tested the hypothesis using the bi-

nomial test at the 5% significance level, treating the-diagnosis of recurrences as Bernoulli

I trials. The hypothesis that matching symptom strings and the complete matching of

stack traces were equally effective in terms of misdiagnosis was not rejected by the same

test at the same level. One caution regarding the observations is that the two tables

used for the comparison were generated using data sets with different recurrence rates,

because analysts did not always record stack traces in TPRs.

A limitation of using symptom strings for comparing problem detection locations is

that symptom strings exist only when problems are detected by consistency checks. (This

issue is discussed further in Subsection 7.6.2.) Note that a stack trace always exists, even

in failures caused by nonsoftware faults.

-- We also used two variations of the symptom string to form symptom clusters: the

procedure at the TOS, and the procedure at the TOS and associated offset. These
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symptoms always exist. Table 7.6 shows the effectiveness of the diagnosis when these I
symptoms are used. Although the three sets of TPRs used to generate Tables 7.5 and 7.6

were different, several ol -tions can be made. Compared with the use of the symptom

string, use of the proce... .e at the TOS increased Ffault.misdiagnosed,max, because some

problems caused by different fajults can be detected at different locations within the

same procedure. Use of the procedure at the TOS and an associated offset increased the 3
number of splits appreciably, because the same code location can have different offset

values in different software versions. One interesting observation is that the number

of joins decreased because of the nonoverlap of fault manifestation windows between

different software faults causing a join. "' , of code changes between the windows,

the failures caused by the faults had diffexznt offsets, although they were detected at an

identical location. I

Table 7.6 Matching Detection Locations Using Variations -f the Symptom String (DB)

Common Symptom #Joins I #Splits [ FfluLt_,,,iediagnoed,ma, J Scor,.zct-dagoim

Procedure at the TOS 5 5 13 2
(130 TPRs, 43 faults)

Procedure at the TOS &
offset 3 11 4 54
(110 TPRs, 40 faults) I

7.6.2 Evaluation using failures in DC I
Table 7.7 shows a breakdown of the 258 software failures caused by 72 faults in

DC. The evaluation was performed based on 166 failures that were detected during the

execution of the DC code and contained stack traces. These failures were caused by 59

software faults. The average number of procedures in a stack trace was 3.6.

I
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Table 7.7 Problem Detection Profile (DC)

I Problem Detection Fraction (%)

Consistency Checks 51
Detection within DC (33)
Detection outside DC (19)

Virtual Memory Protection 46
Detection within DC (31)
Detection outside DC (15)

Hang 3

* 7.6.2(a) Matching stack traces

Table 7.8 shows the effectiveness of the diagnosis when the complete matching of

stack traces was used. Using halt codes together with stack traces reduced the number

of joins while not increasing the number of splits, because the percentage of the problems

detected-by consistency checks was lower. Therefore, the halt code, which represents how

I problems were detected, became a useful common symptom. In the subsequent analysis,

failures with different halt codes were not grouped into the same symptom cluster.

I Table 7.8 Complete Matching of Stack Traces (DC-166 TPRs Caused by 59 Faults)

Common Symptom I #Joins #Splits Ffut-?i•diagnosed,,7ax Scor.rect-diagnosia,mi,, ,

Stack Trace 13 11 21 77
Sthalt code 10 11 16{6} 77

{}:nonoverlap of fault manifestation windows and using subprocedure tracesI
In four of the ten joins in Table 7.8, problems caused by different software faults were

detected at identical code locations during the execution of the same software function.

In the remaining six joins, problems were detected at different locations within the same

procedure. These joins were primarily due to the existence of big procedures that detected

errors caused by different faults. The existence of big procedures is attributed to the

language's support of subprocedures, callable only within a procedure. The data showed
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that, when stack traces and subprocedure traces within the procedures at the TOS are I

used together, Ff! lt-miadiagnosed,max is reduced to eight, without Srrect..-diagoiois,min being I
affected. This result indicates that the effectiveness of the diagnosis when matching stack

traces can be improved by proper sizing of procedures.

The maximum number of faults misdiagnosed was again reduced to six because of the

nonoverlap of fault manifestation windows. With the complete matching of stack traces,

halt codes, and subprocedure traces within the procedure at the TOS, at least 72% (77

out of 107) of the recurrences could have been identified correctly. At most, six faults 3
could have been misdiagnosed. There was no significant difference in the performance of

the complete matching of stack traces in the two software products in terms of successful

diagnosis, but the complete matching of stack traces was more effective in DB than in DC

in terms of misdiagnosis (Table 7.3 and the second row of Table 7.8). These observations

were confirmed by the binomial test at the 5% significance level. Again, a caution is that

the recurrence, rate in the data set used for DB was lower than its actual value.

Table 7.9 shows the results of a classification of the 11 splits in Table 7.8, based on

the major reasons for the splits. "Data corruption" refers to cases in which a software

fault caused corruption in a shared data area. If such corruption occurs, errors can be 3
detected during the execution of different software functions, which is why a software

fault causes failures with different stack traces. There were two subtle software faults 3
(i.e., two splits) causing corruption in shared data. It took a long time to diagnose the

problems, and meanwhile, the faults caused failures with 23 different stack traces. That 3
is, the two faults accounted for 21 of the 23 potential repeated diagnoses.

Table 7.9 Breakdown of Splits (DC)

Reason for Split #Splits Fiere.ted-diag1nosis,mx] I
Data corruption 4 23
Different calling sequence 6 6I•
Data dependence I I
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"Different calling sequence" refers to cases in which differences in stack traces are

attributed to different program paths to reach and detect the same errors. "Data de-

pendence" refers to cases in which, depending on the actual values of errors and the

machine state, a problem is detected at different (but typically nearby) code locations.

In the actual case, the difference in stack traces was one extra procedure at the TOS.

This type of difference in stack traces could also be observed in some data corruption

cases. For example, when a software function accesses a corrupt data region, depending

on the actual values of errors and the machine state, a problem could be detected after

an additional procedure call, after a return to the previous procedure, or at different

locations within that procedure. With this observation, we added the fifth heuristic for

the partial matching of stack traces (Table 7.4):

(5) Given two stack traces, if one is longer than the other by one procedure and the dif-

ference is an additional procedure at the TOS, group them into the same symptom

cluster. This heuristic is called extra-procedure-at-TOS.

Table 7.10 shows the effectiveness of the diagnosis when the partial matching of

stack traces was used. The numbers inside the parentheses indicate the differences from

the numbers obtained when complete matching is used (the second row of Table 7.8).

Subprocedure traces were not used here. To avoid an excessive increase in the number

of joins, the differ-by-one heuristic was not applied to the stack traces that contain only

one procedure, and the contain-the-other heuristic was not applied to the stack traces

that contain one or two procedures. All heuristics increased Scorrect-diagnosia,min, but not

drastically, indicating that the partial matching hueristics could not completely capture

the randomness in failure symptoms caused by corruption in a shared data area. This

result indicates that the error containment capability of software can be a major factor

that affects the effectiveness of the diagnosis. The increases in Fr ... ut-misdiagnosed,maz were

primarily because of short stack traces (containing three or fewer procedures) that easily

caused joins when partial matching was used. Table 7.10 shows that the procedure at

the TOS helped to suppress the increase in the number of joins in DC, also.
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Table 7.10 Partial Matching of Stack Traces (DC) H
Heuristic #Joins #Splits Ffault-misdiagnosed,maz ( Scorrect-diagnoais,min ]

Differ-by-one (+4) (0) (+12) (+7)
Differ-by-one & the same

procedure at the TOS (+1) (0) (+3) (+6)
Contain-the-other (+2) (-1) (+5) (+6)
Contain-the-other & the

same procedure at the
TOS (0) (0) (+3) (+4)

Extra-procedure-at-TOS (+3) (-2) (+3) (+2)

7.6.2(b) Matching problem detection locations

The product DC was not designed to provide the symptom string. Although not

all TPRs recorded the failed software version, it was possible to determine whether two

problems were detected at the same code location, based on the information in TPRs

(stack traces, offsets, halt codes, and textual descriptions by analysts) and the actual

code. Therefore, in the following evaluation, it was assumed that DB-style symptom

strings existed in all failures. That is, we assumed that an automatic diagnosis tool

can compare the detection locations in two failures regardless of the software version.

Symptom clusters were formed based on the following three symptoms, listed in the

increasing order of strictness: 3
(1) Procedure at the TOS

(2) Symptom string

(3) Symptom string and stack trace

Table 7.11 shows that, by matching symptom strings and halt codes, at least 78%

(83 out of 107) of the recurrences could have been identified correctly. At most, six

faults could have been misdiagnosed. For the measured period, there was no significant

difference between the complete matching of stack traces and the matching of symptom

strings in their performance in DC (the second rows of Table 7.8 and Table 7.11). A

comparison of Table 7.5 and the second row of Table 7.11 shows that the use of symptom
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I strings was more effective in DB than in DC in terms of successful diagnosis, but the

use of symptom strings showed similar performance in the two products in terms of

misdiagnosis. These observations were again confirmed by the binomial test at the 5%

significance level.

Table 7.11 Matching Detection Locations (DC-166 TPRs Caused by 59 Faults)

Common Symptom #Joins #Splits Ffcult-misdiagnosed,max Scorrect-diagnosia,min

Procedure at the TOS 15 10 25 89
Symptom string 8 12 11f6} 83
Symptom string n

stack trace 6 14 6 70
{}: nonoverlap of fault manifestation windows

7.6.2(c) Version independent problem detection location

Now a question is: how does an automatic tool compare the two detection locations in

DC? The implementation of the DB-style symptom string can be encouraged in all prod-

ucts. But the percentage of failures that have the symptom string (i.e., the percentage

of the failures that are detected by consistency checks) will depend on software quality.

Besides, the value of the percentage can be estimated after the software is released to

the field.

I Here we propose two approaches. First, the diagnosis tool can maintain differences in

offsets among different software versions. While this approach guarantees a comparison of

two detection locations, it requires additional work of cross-referencing software versions

in generating a new version, and the size of the failure database may grow rapidly.

Second, the machine-code symptom string can be used. The machine-code symptom

string is defined as machine instructions in the binary form, before and after a detection

location. Just as a stack trace, the machine-code symptom string always exists. (There

may be rare cases in which we cannot compare machine-code symptom strings if two

detection locations are at different edges of two memory pages and the connecting pages
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are not available.) A possible strategy is to use the DB-style symptom string, if available, 1
or to use the machine-code symptom string.

7.7 Summary 3
This chapter presents a system-independent approach for automatically diagnosing 3

recurrences based on symptoms, for use in environments where many users run the same

software. The approach is based on observations that the majority of field software fail-

ures in such environments are recurrences and that failures caused by the same software

fault often share common symptoms. Specifically, we proposed the comparison of stack 3
traces and problem detection locations as a strategy for identifying recurrences. We ap-

plied this strategy using failures in two Tandem system software products and compared I
the results obtained with actual diagnosis and repair logs from analysts.

The comparison showed that between 75% and 95% of recurrences can be successfully I
identified by matching failure symptoms, such as stack traces and detection locations.

Less than 10% of faults are misdiagnosed. The results show that the proposed automatic

diagnosis of recurrences allows analysts to diagnose only one out of several software

failures (i.e., primarily the failures caused by new faults). In the case of a recurrence

for which the underlying cause was identified, the diagnosis tool can rapidly provide a 3
solution. In the case of a recurrence for which the underlying cause is being investigated,

the diagnosis tool can prevent a repeated diagnosis by identifying previous failures caused 3
by the same fault. These benefits are not free of cost. Misdiagnosis is harmful, because

a single misdiagnosis can result in multiple additional failures. (Such a danger exists U
in diagnoses by analysts, also.) The proposed approach needs to be implemented in a

pilot. Measurements need to be made to determine how well the approach works in real

environments and to make design trade-offs.

The results also indicated that the error containment capability of the software can be I
a major factor determining the effectiveness of the diagnosis. Proper sizing of procedures

can also be a factor when stack traces are used. I
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The numerical results reported here are specific to the measurements. However, the

two measured products used for the evaluation consist of many small procedures and are

written in a high-level language, characteristics common in system software products.

Our experience shows that there are no special requirements the software must satisfy

for the approach to be effective. Still, further experiments are necessary to determine

how well the numbers will project to other system software products.

There are several areas that require more research. First, more diagnosis strategies

have to be investigated. For example, the use of data-oriented symptoms and associ-

ated clustering strategies have to be investigated based on actual dumps. Second, it is

necessary to use failures from more software products for evaluations, because in real en-

vironments, many products run together and the effects of faults can cross the boundaries

between the products. Failures caused by nonsoftware faults also have to be included in

the evaluation, because deterrr :ning whether a failure was caused by a software fault is

not always straightforward. Finally, it would be interesting to investigate the effective-

ness of the approach for application software products and for diagnosing problems less

severe than operating system crashes.
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Chapter 8 |
I

Conclusions

I
The contribution of tb;- thesis is in identifying and addressing critical dependability

issues for large, continually evolving, operational software. Using measurements collected 3
from the Tandem GUARDIAN operating system, this ','esis demonstrates how to develop

analysis techniques for evaluating the dependability of operational software while taking I
design issues into account. This research brings practical issues in designing and main-

taining large software systems together with theoretical issues such as problem diagnosis, n

fault tolerance, and modeling and analysis. This thesis consists of two major parts: anal-

ysis and design. The analysis covered software fault categorization and characterization m

of software error propagation, identification of software fault tolerance of process pairs,

evaluation of the impact of software faults on the overall system, and the development

of techniques for analyzing multiway failure dependencies among software and hardware 3
modules. Based on the results of analysis, this thesis developed a system-independent

approach for automatically diagnosing recurrences based on symptoms. 3
The next three sections summarize the measurements and the major results of the

analysis and design from this research. The numerical results are specific to measure- 3
ments, but the methods and principles apply to other studies. The thesis concludes with

a section that discusses possible extensions of this work. 3

I
I
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* 8.1 Measurements

I Measurements were taken from a fault-tolerant software system: the Tandem

GUARDIAN operating system. Two types of data were used: human-generated soft-

ware failure reports and on-line processor halt logs automatically generated by the op-

erating system. Human-generated software failure reports contain detailed information

about the anderlying faults, failure symptoms, and fixes. Only the reports generated as

a result of field software failures (i.e., software failures which occurred in user systems)

were used. On-line processor halt logs provide close to 100% of reporting and accurate

3 timing information on processor failure and recovery. Processor halt logs taken from two

in-house Tandem systems (a Tandem Cyclone and a Tandem VLX systems) were used.

3 Software failure reports were used for categorizing the underlying faults, for investi-

gating failure symptoms, for evauating the software fault tolerance of process pairs, for

developing a reliability model for operational software, and for developing a symptom-

based diagnosis strategy for automatically diagnosing recurrences. Processor halt logs

3 were used for developing a method for analyzing multiway failure dependencies and for

evaluating the improvement in service achieved by the single-failure tolerance of the

I measured system.

8.2 Analysis

1 8.2.1 Fault categorization and characterization of error prop-
agation

We explored new ground for building software fault models from the software fault

3 tolerance perspective. In addition to categorizing the underlying faults of software fail-

ures, we identified the immediate effects of the faults on the processor state and traced

3 the propagation of the effects on other system areas until problems were detected by the

operating system.

9
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The results showed that about 72% of reported field software failures in Tandem I
systems are recurrences of previously reported faults. This result shows that, in environ-

ments where many users run the same software, the number of faults in software is not

the only important factor. Recurrences can seriously degrade software dependability in

the field.

Missing operations and not providing routines to handle rare but legitimate opera-

tional scenarios are the most common types of software faults in Tandem systems. The

data showed that there is a 60% chance that a single program variable acquires an initial,

incorrect value when software faults are exercised. In about 20% of the cases, multiple

program variables are affected simultaneously. Once errors are generated, the three major 3
error propagation modes are: the first error is certain to be detected on the first access by

consistency checks (no propagation, 31%); the problem is detected shortly after the first I
error is accessed and used (quick detection, 39%); and the first error causes more errors,

which are detected after a significant latency (further corruption, 18%). In about half of I
the failures, problems are detected by consistency checks; in the other half, problems are

detected as a result of address violations.

The investigation of failure symptoms showed that failures caused by the same soft- -
ware fault often share identical stack traces, which suggests that automatic diagnosis of

recurrences based on symptoms might be possible. Further analysis showed that error 3
propagation (further corruption) and modular program structure are major reasons that

failures caused by the same software fault have different stack traces. No propagation 3
and quick detection are major reasons that failures caused by the same software fault

have identical stack traces. Consistency checks help failures caused by the same software 3
fault have identical stack traces by preventing error propagation. These results formed

the basis for our development of an approach to automatically diagnose recurrences based I
on symptoms.

I
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1 8.2.2 Evaluation of software fault tolerance

3 Software fault tolerance of process pairs in the Tandem GUARDIAN system was

evaluated using two types of measurements: human-generated software failure reports

3 and on-line processor halt logs automatically generated by the operating system.

The results showed that hardware fault tolerance buys software fault tolerance. Using

I process pairs in Tandem systems allows the system to tolerate about 70% of reported

faults in the system software that cause processor failures. This result shows that, in a

fodistributed transaction-processing environment, a significant level of software fault toler-

ance can be achieved by the use of checkpointing and restart, a technique for tolerating

hardware faults. The loose coupling between processors, which results in the backup

3 execution (the processor state and the sequence of events occurring) being different from

the original execution, is a major reason for the measured software fault tolerance.

The results indicated that the actual level of software fault tolerance achieved by the

use of cleckpointing and restart depends on the degree of difference in the processing

3 environment between the original execution and restart and on the proportion of sub-

tle faults in the software. While process pairs may not provide perfect software fault

3 tolerance, the implementation of process pairs is not as prohibitively expensive as is

developing and maintaining multiple versions of large software programs.

U The results of Markov reward analysis using processor halt logs showed that the single-

failure tolerance of the measured system reduces the service loss incurred by software

I failures by 89%. This result corroborates the results obtained using software failure

reports. The results also showed that the single-failure tolerance reduces the service loss

incurred by nonsoftware failures by 92% and that software failures account for 30% of

* the service loss in the measured system.

8.2.3 Analysis of failure dependency

Failure dependency is a serious concern in parallel and fault-tolerant systems. Fail-

ure dependencies between two components can be analyzed using correlation coefficients.
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However, such dependencies can exist among multiple components. We developed a i
method for analyzing multiway failure dependencies among software and hardware mod-

ules. The method is based on multivariate statistical techniques, such as factor analysis

and cluster analysis. An illustration of the method using processor halt logs demon-

strated that factor analysis can unearth the underlying multiway failure dependencies

and that cluster analysis can identify the actual dependency patterns.

8.2.4 Reliability modeling of operational software

To identify the factors determining the dependability of operational software, we built

a software reliability model that describes the impact of software faults on an overall I
Tandem system in the field, and we conducted reliability sensitivity analysis using the i
model. The results showed that, in addition to the conventional approach of reducing the

number of faults in software, software dependability in Tandem systems can be enhanced 3
by reducing the recurrence rate and by improving the robustness of process pairs and

the system configuration. The number of faults in software and the recurrence rate 3
are general factors; the robustness of process pairs and the system configuration are

platform-dependent factors. Improvement efforts can be optimized by estimating the 3
cost of improving each factor.

The results also showed that the impact of software fault tolerance (i.e., the robust- I
ness of process pairs) and the impact of system configuration are as significant as is the

impact of the number of faults in software. A complete elimination of recurrences in the 3
measured system would triple the software mean time between failures. The analysis of

reliability sensitivity to fault category showed that faults such as missing operations and

not providing routines to handle rare but legitimate operational scenarios are the major

causes of software reliability loss. Additional code inspection and testing efforts can be I
directed to these types of faults. The investigation of the impact of system configura- -
tion on software dependability demonstrated the importance of considering interactions

between software and hardware in the context of an overall system. 3
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1 8.3 Design

U After all analyses were completed, the issue of recurrence stood out. Based on the

results of analysis, we developed a system-independent approach for automatically iden-

tifying recurrences based on symptoms, for use in environments where many users run

the same software. Specifically, we proposed the comparison of stack traces and prob-

lem detection locations as a strategy for identifying recurrences. We applied this strategy

3 using failures in two Tandem system software products and compared the results obtained

with actual diagnosis and repair logs from analysts.

3 The comparison showed that between 75% and 95% of recurrences can be successful.

identified by matching failure symptoms, such as stack traces and detection locations.

3 Less than 10% of faults are misdiagnosed. The results show that the proposed automatic

diagnosis of recurrences allows analysts to diagnose only one out of every several software

3 failures (i.e., primarily the failures caused by new faults). In the case of a recurrence

for which the underlying cause was identified, the diagnosis tool can rapidly provide a

I solution. In the case of a recurrence for which the underlying cause is being investigated,

the diagnosis tool can prevent a repeated diagnosis by identifying previous failures caused

by the same fault. These benefits are not free of cost. Misdiagnosis is harmful, because

a single misdiagnosis can result in multiple additional failures. (Such a danger exists in

diagnoses by analysts, also.) The proposed approach needs to be implemented in a pilot.3 Measurements need to be made to determine how well the approach works and to make

design trade-offs.

I
8.4 Future WorkI

Future work is to continue to bring analysis of measurements and design together.3 An extension of this research is to address implementation issues for the diagnosis of

recurrences. Given that hardware fault tolerance buys software fault tolerance, another

3 extension is to establish empirical software fault models based on measurements and to
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relate the models to the design of error detection, diagnosis, and recovery strategies. An I
important platform for future work is massively parallel systems. At this point, little is

known about software and hardware dependability issues for those systems.
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